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Abstract: While rock glaciers (RGs) are widespread in the Zhetysu Alatau mountain range of Tien
Shan (Kazakhstan), they have not yet been systematically investigated. In this study, we present the
first rock glacier inventory of this region containing 256 rock glaciers with quantitative information
about their locations, geomorphic parameters, and downslope velocities, as established using a
method that combines SAR interferometry and optical images from Google Earth. Our inventory
shows that most of the RGs are talus-derived (61%). The maximum downslope velocity of the active
rock glaciers (ARGs) was 252 mm yr−1. The average lower height of rock glaciers in this part of
the Zhetysu Alatau was 3036 m above sea level (ASL). The largest area of rock glaciers was located
between 2800 and 3400 m ASL and covered almost 86% of the total area. Most rock glaciers had a
northern (northern, northeastern, and northwestern) orientation, which indicated the important role
of solar insolation in their formation and preservation.

Keywords: rock glacier; inventory; Tien Shan; InSAR; Zhetysu (Dzhungar) Alatau; permafrost

1. Introduction
1.1. Importance of Inventorying Rock Glaciers

There are many options for defining rock glaciers; therefore, different researchers
interpret this term differently. Several scientists [1–4] have defined a rock glacier as an
accumulated mixture of debris and ice located on a mountain slope that has been deformed
under gravity and has formed vicious striking tongue formations that flow up to a kilometer
wide and up to several kilometers long. According to Berthling [5], rock glaciers can be
determined as “a visible manifestation of cumulative deformation resulting from long-term
creep of mixtures of ice and debris in permafrost conditions.” The same definition was
used by [6] in their work. It has been reported [7–10] that rock glaciers are reed or lobed
landforms on high mountain slopes, usually consisting of a mixture of loose rock fragments
and ice.

In this paper, we used the definition presented in the documents of the International
Permafrost Association (IPA) [11,12], which define rock glaciers as detrital landforms
formed as a result of former or current creep of frozen ground (permafrost), found in a
landscape with the following morphology: front (mandatory criterion), lateral margins
(mandatory criterion), and possibly a ridged and furrowed surface (optional criterion)
(Figure 1). That is, rock glaciers are (or were) landforms that carry debris from an uplift
(original zone or root zone) to their front.
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Rock glaciers play an important role in the water balance of high mountain regions [13].
Mountain rock glaciers contain globally significant water stores. Their ability to store fresh
water in winter makes them important sources of fresh water in summer for semi-arid
and arid regions such as the central Andes and the Sierra Nevada [14–18]. Recent studies
have highlighted the importance of rock glaciers as temperature- and climate-tolerant
water stores, as well as buffers for hydrological seasonality due to the insulating effect
of debris [13,19,20]. Their importance in mountain hydrology is likely to increase in the
coming decades due to global glacier retreat [21].

Rock glaciers have geomorphological, climatic, and hydrological significance in alpine
periglacial conditions. Rock glaciers can take several thousand years to form and are visible
indicators of permafrost that contribute significantly to the mass transport of alpine land-
forms [22,23]. As such, knowledge of their distribution can provide reliable information on
past occurrences of permafrost and associated climatological conditions [24–27]. However,
there are cases where subsurface ice can still be found in favorable conditions at much
lower altitudes.

1.2. Classification of Rock Glaciers by Their Activity

An active rock glacier is a landform that transports sediment from the root zone to its
front. It is characterized by a steep front (steeper than the angle of repose) and possibly
by flanks with fresh exposed material at the top [11]. The displacement rate can vary
from tens of centimeters to several meters per year [28]. Transitional (intermediate) rock
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glaciers have ice in their composition and move at a speed of less than one decimeter per
year. Depending on the topographic and/or climatic context, transitional rock glaciers can
evolve either into a relict or an active state. A relic rock glacier is a landform that no longer
transports sediments from the root zone to its front due to permafrost depletion. In other
words, they do not move and do not have ice in their composition. Relic rock glaciers are
usually formed at lower elevations than active rock glaciers.

Speed is affected by changes in ground temperature, as well as the presence of mois-
ture, which can speed up or slow down a rock glacier on a ten-year scale [29–32]. Rock
glaciers also show strong seasonal fluctuations in surface movement in many cases, with
higher velocities in summer and autumn compared to winter and spring [27,33,34].

The IPA Rock Glacier Inventory (RoGI) and Kinematics Action Group, established
in 2018 [35], intends to support the development of generally accepted basic concepts
and standard guidelines for the inventory of rock glaciers in mountainous permafrost
regions [11]. One of the most important elements in standardized RoGI catalogs is kine-
matic information. Since indirect kinematic information is often inaccurate as it relates
to operator interpretations, the result of visual observations of morphological (e.g., fore
angle) indicators associated with vegetation [36,37] can be highly unsatisfactory. Recently,
more accurate approaches based on remote sensing data (e.g., Sentinel-1 image satellite
interferometry) [38] have been developed to characterize rock glacier kinematics on a large
scale [16,34,39–41].

In this context, as part of the European Space Agency (ESA) Permafrost Climate
Change Initiative (Permafrost_CCI), the so-called CCN2 project (https://climate.esa.int/
en/projects/permafrost/; last accessed: 10 October 2021)—in line with the basic concepts
proposed by the IPA Action Group [11,42]—specific guidance has been developed [28] for
the systematic integration of kinematic information into RoGI using InSAR data. Under
this framework, workflow is reduced to outlining moving areas and assigning a speed class
based on the results of interferometric analyses; attribute information is filled in according
to IPA standards.

Rock glaciers are common in Northern Tien Shan, and their descriptions can be
found in studies from the beginning of 20th century; moreover, in 1923, researchers took
measurements of the rock glacier front [43–46].

It was initially believed that these rock glaciers were mainly of a periglacial origin, but
they may also contain sedimentary ice [47,48]. One of the latest studies of rock glaciers in
the Zhetysu Alatau region Gorbunov [49] identified about 850 active rock glaciers based
on aerial photography at a scale of 1:10.000; the photographs are dated 1969, 1979, and
1984, and they do not specify information about geographical coordinates and topographic
parameters. However, descriptions and detailed ground-based geodetic measurements
were performed for only one of them—the rock glacier Nizkomorenny [50]. The altitudinal
boundaries of the active rock glaciers are 200–300 m lower in this region than in the
relatively well-studied Ile Alatau Range of the Tien Shan mountain system [49].

Other research results are absent for the Zhetysu Alatau region. Our inventory work
was started from scratch, and has so far been completed for the Aksu and Lepsy River
Basins of the Zhetysu Alatau. Therefore, the main task of our work was to compile an initial
digital catalog according to international standards [11,12,28] and evaluate the kinematic
performance of rock glaciers in the region.

2. Territory of Interest

The Zhetysu Alatau (or Dzhungar Alatau) is a mountain system stretching from west–
southwest to east–northeast along the state border between the Republic of Kazakhstan and
the People’s Republic of China. The total area of the Zhetysu mountain system, including
the basin of the river Borotala in China, is about 40,000 km2 [51]. The Zhetysu mountain
system is located mostly in Kazakhstan.

The Ile River is the southern border of this mountain system, while the northern border
is the Balkhash Plain and the Alakol Lake and Dzhungar Gates are the northeastern border.

https://climate.esa.int/en/projects/permafrost/
https://climate.esa.int/en/projects/permafrost/
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The longitudinal river valleys—Koksu in the west and Borotala in the east—divide the
Zhetysu Alatau into two large ridges parallel to each other: the North Central and the
South Central.

The length of the North Central Range is about 400 km, and that of the South Range
300 km. The Northern Zhetysu Alatau includes the longest and highest ridge of this
mountainous country. Sub-latitudinally, the ridge stretches for 260 km, reaching the highest
elevation of 4622 m ASL (Besbakan). The largest spurs of the ridge are Kungei and Tastau.

The Southern Zhetysu Alatau includes the Toksanbay and Bedzhintau ridges, both
of which have many spurs. The Muztau mountain range houses the highest peak of the
Southern Zhetysu Alatau, which reaches 4370 m ASL. The Southern Zhetysu Alatau also
includes the Tyshkantau ridge, as well as the isolated, relatively low Koyandytau, Suat,
and Altynnemel ridges with low-mountain spurs [52].

The Zhetysu Alatau is influenced by arctic, polar, and tropical air masses, which
undergo significant transformations on their way to the ridges. Arctic air masses come
from the north and northwest, from the regions of the Barents and Kara Seas. More often,
they come during the early winter period, and their invasions are accompanied by a sharp
drop in air temperature.

In the Zhetysu Alatau, the average annual rainfall is 600–800 mm; in the southeast
of the ridge, average annual rainfall is 400 mm. In western Dzungaria, the largest annual
precipitation in the entire range of altitudes falls in river basins. Chizha Range has the
highest precipitation rate (1400–1600 mm) and thus propels moisture-carrying air masses.

The average long-term air temperatures in the lower parts of the glacial zone (at
altitudes of 3200–3600 m ASL) during the accumulation period are −8–−10 ◦C; in the upper
parts (above 4000 m ASL), temperatures drop by up to −14–−16 ◦C. The coldest month
is January, with temperatures of −17–−19 ◦C. The maximum temperatures associated
with the intrusions of thermal air from the surrounding deserts reach 13–15 ◦C, and the
observed absolute maximum is 25 ◦C. Thus, the great differences in the absolute heights of
the mountain relief of the Zhetysu Alatau and its complex morphology are the cause of a
wide variety of climatic conditions. The altitudinal boundary of the permafrost belt in the
Dzungarian Alatau coincides approximately with the isohypse of 2500 m ASL; these are
200 m lower than in the Northern Tien Shan [53]. However, unfortunately, the data for this
book were collected mainly during 1988.

The average height of the Zhetysu Alatau glaciers is about 3578 m in 2016 and the
average maximum and minimum heights are 4545 m and 2869 m, respectively [54–58]. The
relative average height of the glaciation zones is lower than in other regions of the Tien Shan.
For example, in the central Tien Shan, the average height of the glacier is about 4316 m,
respectively, the average maximum and minimum heights are 5112 m and 3707 m [59].
Additionally, in the northern part of the Tien Shan, according to research by Narama and
others [60], the average height of glaciers is 3909 m (lli-Kungöy), the average maximum
and minimum heights are 4939 m and 3306 m., respectively.

The Zhetysu Alatau glaciers, as the main source of moraine-derived rock glaciers,
have been studied by number of authors. Severskiy and others [61] conducted detailed
studies of the ice-cover dynamics for the entire Zhetysu Alatau Range over the period
from 1956 to 2011, and they showed that the annual glacier reduction rate was 0.7% in the
Aksu–Bien and Lepsy–Baskan river basins. At the same time, they noted that the most
intensive reduction rate of the glaciers was observed mainly in the basins of the Southern
Zhetysu Alatau, while it was at its lowest in orographic closed basins. In this paper, we
considered areas of the Aksu and Lepsi river basins of the Zhetysu Alatau Range (Figure 2).
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Figure 2. The Zhetysu Alatau basins, including Aksu and Lepsi rivers (purple boundary).

3. Materials and Methods

We used two basic approaches as the main methodology: geomorphologic and kine-
matic. In this regard, the general workflow for creating an inventory of rock glaciers
consists of the following steps: the manual interpretation of the rock glacier contours were
based on optical satellite images in the Google Earth environment by visual interpretation
of their geomorphological features; then, generate the line-of-sight direction (LOS) surface
velocity estimated from Sentinel-1 InSAR data [6,40,62,63], which are described in the
IPA and International Centre for Integrated Mountain Development (ICIMOD) manuals.
According to the guidelines of the IPA [11,12,42], the systematic inventory procedure for
rock glaciers consists of three stages, which are described below and illustrated in Figure 3.
This diagram [64] was adapted to the conditions and availability of initial data for the
study region.
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3.1. Delineation of Rock Glaciers by Geomorphologic Approach

The geomorphological approach represents visual detection using high-resolution
images and DEM-based products. Surface texture and morphometric analyses can also be
used for this purpose. This is a classic approach that is complemented by field visits. This
makes it possible to produce an exhaustive list of assumed moving and stationary land-
forms, the distinction of which (activity classes) is primarily based on geomorphological
characteristics. Photogrammetry and LiDAR DEM imaging, when available, facilitates the
identification of rock glaciers in forested areas.

We inventoried rock glaciers by geomorphological characteristics using high-resolution
remote sensing data available on the Google Earth platform according to the methods ex-
plained in [65,66] according to the descriptions given in the IPA instructions. Rock glaciers
frequently have transverse ridges and furrows, lateral margins, and talus-like fronts due
to the deformation of internal ice (see Figure 1). They rarely have the following indica-
tors: crevasses with exposed ice, abundant thermokarst, abundant supraglacial lakes, ice
cliffs, supraglacial streams/channels, and a high (over 1 m/yr) subsidence rate. Due to
the constant supply of talus or debris, the surface textures of rock glaciers are usually
different from the surrounding slopes, and their surface slopes usually have little or no
vegetation [40]. Based on these criteria, we visually mapped the landforms in the images
correspond to the moving targets in the interferograms and identified the rock glacier. To
distinguish the rock glaciers from permafrost and bare ground surface velocity obtained
from InSAR was used.

Google Earth data have been applied to a number of research areas [67–73]. Google
Earth uses SPOT images or Digital Globe products (e.g., Ikonos and QuickBird) at a
resolution that is close to aerial photographs. The images were georeferenced with a DEM
based on the Shuttle Radar Topography Mission SRTM data, which have a resolution of
90 m in the study area. In addition, Google Earth supports user-friendly GIS tools that
help in building custom databases and exporting data as KML files and converting them to
shapefiles for further analysis in the GIS environment [13,74]. Google Earth has previously
been used as a platform for rock glacier mapping in British Columbia, the Bolivian Andes,
the Hindu Kush Himalaya region, and the Himalayas of Nepal [13,22,74–76]. In the absence
of any spectral and spatial information about the images used, quantifying uncertainty
into the inventory was difficult. However, in a similar location [74], image fidelity was
found to be sufficient for this purpose. Rock glaciers are classified as transitional or active
based on their surface velocity. Rock glaciers with unclear surface velocity only fired if
the InSAR sensitivity in that area was low, in which case they fired with indeterminate
activity. Debris-covered glaciers and rock glaciers are two ends of a continuum [19,77].
Debris-covered glaciers with visible bodies of ice upslope, abundant thermokarst, abundant
supraglacial lakes and other visible indicative features listed in IPA guidelines [12] were
not included in the rock glacier inventory.

3.2. Identifying Surface Velocity Using SAR Interferometry

Kinematic approach: The differential interferometry method detects the movements of
the Earth’s surface using the phase differences between two radar images taken at different
times [78]. Since the phases of the differential interferogram were wrapped between −π

and π, one phase cycle corresponded to half a wavelength (e.g., 2.8 cm for C-band [16]) of
surface displacements along the direction of the radar sighting beam [78].

In our paper, images from the Sentinel-1 satellites of the SLC level were used; these are
a freely available Alaska Satellite Facility (https://asf.alaska.edu/ (accessed on 26 April
2022)) resource, and they make it possible to select a stack of images for multi-pass pro-
cessing. The IW mode has a resolution of 20 m in azimuth and 5 m in range. The selection
of radar images was based on the following criteria: The survey period was 5 years from
8 August 2017 to 28 September 2021 with a seasonal restriction (only 2 months of August
and September were selected); the total number of images was 25 for ascending and 26
for descending orbits. To achieve high interferometric coherence, a maximum time base

https://asf.alaska.edu/
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of 48 days was chosen. According to the specified criteria, 49 interferometric pairs were
built for images in the upward survey geometry and 52 pairs for the downward survey.
Basic survey parameters: ascending orbit—path 158, frame 142; descending orbit—path
136, frame 441; IW survey mode.

We chose only two months of observations because of minimal snow cover occurring
only during August and September. This is a serious limitation in achieving sufficient
coherence between surveys [79]. The image series was processed using the intermitted
SBAS method [80] or discrete SBAS, where the timeline was set as hard and the whole stack
started with broken links (because only a few months were included in the processing).
The discrete SBAS method interpolates the time periods when pixel coherence falls below
the selected coherence threshold on some interferograms, and also results in a significant
improvement in spatial coverage compared to the original SBAS algorithm for partially
vegetated study areas [81,82].

Interferometric processing was performed using ENVI software with an additional
SARScape multimodule (©Sarmap SA, 2001–2020). Stack processing was performed in the
standard settings of the Sentinel TOPSAR mode and according to the pipeline (processing
steps) in the SBAS module.

Then, the values of displacement velocities from LOS units were converted into values
of vertical velocities in millimeters. The resulting raster surfaces of vertical velocities were
cut from a vector file with geomorphological contours of rock glaciers; from the stripped
values, the maximum and minimum speed indicators were extracted into the attribute
information. Raster surfaces, prior to cutting geomorphological contours, also underwent
an additional procedure for evaluating all selected moving areas in order to validate and
cut-off moving areas whose kinematic nature was associated with slope processes and
other phenomena. When re-comparing the geomorphological contours of rock glaciers and
the raster of motion velocities, several objects were refined and supplemented. To move
into the kinematic categories, seven classes were created (<1, 1, 1–10, 10, 10–100, 100, and
>100 cm/yr). The choice of kinematic classes was made according to the proposals of the
international working group [42].

Where the calculated speed was close to the upper limit of the speed class, the ARG
was assigned to that faster class because the one-dimensional line-of-sight measurement
provided by radar interferometry represents only one motion component, and thus typically
underestimates the actual three-dimensional surface motion [6]. The same was enacted
with the natural temporal variations in surface displacement rates; i.e., if two or more
classes were present during the observation time interval, the highest displacement speed
was used to determine the speed class.

Finally, we derived the topographic/geometric parameters using Spatial Analyst tools
in the GIS environment. Height information was determined from the SRTM DEM. Our
inventory lists the geographical locations (including longitude, latitude, and altitude), the
geomorphic attributes (including area, length, aspect and PISR), and the surface velocity of
each rock glacier. Then, we compiled a spreadsheet to summarize the characteristics and
calculate the total statistics.

4. Results

For the first time since the 1990s, rock glacier identification and inventorization work
was carried out in the Lepsy and Aksu River basins of the Zhetysu Alatau, and their
detailed digital catalog was compiled in accordance with international standards [11,83].

A total of 256 rock glaciers were identified, with a total area of more than 28.5 km2 and
an average lowest boundary at 3036 m ASL; the rock glaciers were 0.11 km2 by average size.
The largest rock glacier was 1.53 km2 by size, while the smallest rock glacier had an area
of about 0.004 km2. According to the kinematic categorization for speed assessment, we
found that active rock glaciers counted for 204 units; 47 of their total number were included
in the transitional category and 5 were relics.
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4.1. Type of Rock Glaciers Origin

Talus-derived types of rock glaciers were more numerous than those of moraine origin.
About 61%, or 156 rock glaciers, were formed from talus in the Lepsy and Aksu River
basins, while the remaining 39% (100 glaciers) were formed from moraines (Figure 4).
Several rock glaciers were also found in the study area with several episodes of activity,
where newer lobes dominated older ones. Complex rock glaciers with more than one root
zone are most common in the study area. Figure 5 shows examples of rock glacier origin
types in two basins of the Zhetysu Alatau Range.
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According to the results of the analysis of the topographic/geometric parameters, the
north-facing slopes, which have lower solar radiation, are more favorable for the formation
of rock glaciers than the south-facing slopes. The number of inventoried rock glaciers in
this study can be considered a conservative estimation due to limitations in remote sensing
data and human factors. As such, more rock glaciers in this area cannot be ruled out. Table 1
lists the main characteristics of the rock glaciers obtained in our analysis.

Table 1. Main characteristics of rock glaciers located in the Aksu and Lepsy River basins.

Area (km2) Slope (◦) Altitude (m) Pot. Radiation
(W/m2)

Minimum
Altitude at the

Front (m)

Maximum
Altitude of Rock

Glaciers (m)

Mean 0.11 16.9 3101 1,025,519 3036 3165

Std
deviation 0.16 5.0 205 76,791 212 199

Minimum 0.004 7.7 2384 836,379 2384 2614

Maximum 1.53 42.0 3723 1,234,567 3640 3723

4.2. Surface Velocity Evaluation

Quantitative analysis of the distribution of identified rock glaciers showed the fol-
lowing distribution over the combined watersheds of the Aksu and Lepsy Rivers. Thus,
102 RGs were allocated for the Aksu basin and 154 RGs for the Lepsy basin. Depending
on topographic factors (topography, slope, size, and amount of ice in the composition),
rock glaciers move differently, even if they are located close to each other. According to the
manuals [64,83] and research [6], when calculating the velocity, in the case of different speed
indicators on the body of one rock glacier, we took the maximum value. In Figures 6 and 7,
one circle represents one individual rock glacier with its maximum velocity.
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4.2.1. Aksu River Basin

In the Aksu River basin, 93 active rock glaciers were identified, with a displacement
rate of up to 240 mm yr−1 (Figure 6); eight units fell into the transitional category and one
was classified as a relic. The lower elevation mark at which active rock glaciers are located
in the basin is 3100 m ASL and the maximum value is 3700 m ASL.

4.2.2. Lepsy River Basin

In the Lepsy River basin, 154 rock glaciers were identified, of which 111 units were
active: 39 in the transitional category and 4 in the relict category. The displacement rate in
the analyzed basin was also −252 mm yr−1 (Figure 7). The lower and upper heights of the
location of active rock glaciers ranged from 2600 m ASL to 3720 m ASL.

Velocity field distribution analysis made it possible to identify several groups of rock
glaciers with a similar pattern of velocity distribution over the glacier body (Figure 8):

(a) The first type—the main distribution of moving areas in the middle of the rock
glacier body;

(b) The second type—the location of the moving areas closer to the forehead of the
rock glacier;

(c) The third type is a complex distribution of moving sections in several areas in same
glacier body.
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Figure 8. Examples of displacement fields by types of velocity distribution (type I—moving area in
the middle, type II—forehead moving area, type III—several moving areas).

A more detailed analysis of velocity distribution types will be carried out in the next
part of the work with a scaling of the study area (the entire Zhetysu Alatau).

4.3. Additional Geomorphological Features
4.3.1. Aspect

About 54% of the total area (or 15.4 km2) of rock glaciers was located on slopes with
northern exposure: 17% in the northern, more than 20% in the northeastern, and almost 17%
in the northwestern exposures. On slopes with western and eastern exposures, 13% and
17% of the total area of rock glaciers were formed, respectively. Only 16% of rock glaciers,
covering 4.5 km2 of the area, were formed on slopes with southern exposure, including on
the slopes of southeastern exposure (SE), where 7% of rock glaciers were observed; in the
southwestern exposure (SW), 5% were formed, while only 4% were formed in the southern
(S) exposure (Figure 9a,b).
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Figure 9. Distribution of rock glaciers by aspect: (a) area ratio (km2) per aspect; (b) percentage of area
per aspect.
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The overall analysis showed that the rock glaciers developed at lower elevations in
the slopes of northern aspects and at higher elevations in southern aspects. Significant
variability was observed in the aspect distribution of the rock glacier area. The northeast
(NE) slopes have a large area of rock glacier, followed by the north (N) and east (E) slopes.
In total, more than 5.8 km2 of the rock glacier area is located on the northeastern slopes
(Figure 9a).

4.3.2. Height Distribution

The largest area of rock glaciers was 24.5 km2 and was located between 2800 and 3400 m
ASL. This is almost 86% of the total area of the inventoried rock glaciers (Figure 10a,b). Of
these, 11.83 km2, or 41.5%, of the total area lies within altitudes of 3000–3200 m ASL. The
smallest concentration is located between 2200 and 2400 m ASL and 3600 and 3800 m ASL,
where glacier amounts are less than 1% in total.
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Figure 10. Distribution of rock glaciers by height: (a) ratio of area (km2) to height; (b) percentage of
area per height.

4.3.3. Accuracy of Evaluation

Accuracy was assessed by two operators by isolating the boundaries of three active
rock glaciers once each day over three days (Figure 11). All three rock glaciers were of
moraine origin.
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Figure 11. Polygonal outlines of rock glaciers.

During mapping, the fronts of the main tongues were plotted on the map with small
differences, and the minimum height of each ARG remained almost unchanged. Rooting
zones demonstrated higher variability, which significantly affected maximum height vari-
ability (differences in the height of the root zone between two operators: 1-ARG—14 m,
2-ARG—35 m, and 3-ARG—8 m). The sides of the third ARG remained identical for both
operators during all three days, while opinions were divided regarding the first and second
ARGs. One operator singled out, in the main, the most obvious creeping beats. The other
also included scree cones. For ARG-3, the average area for the first operator was 0.58 km2,
for the second—0.598 km2, and for ARG-2—0.198 km2 and 0.24 km2, respectively (Table 2).

Table 2. The results of the evaluation of accuracy by two operators.

Operator 1
Mean Area (km2) Standard DeviationDay–1

(km2)
Day–2
(km2)

Day–3
(km2)

Rock glacier-1 0.572916 0.586109 0.582255 0.580426 0.005539008

Rock glacier-2 0.194221 0.198028 0.202213 0.198154 0.003263937

Rock glacier-3 0.906863 0.911821 0.913899 0.910861 0.002951556

Operator 2
Mean Area (km2) Standard DeviationDay–1

(km2)
Day–2
(km2)

Day–3
(km2)

Rock glacier-1 0.615497 0.601093 0.577631 0.598073667 0.015605464

Rock glacier-2 0.240758 0.239961 0.239547 0.240088667 0.000502563

Rock glacier-3 0.963554 0.888456 0.917465 0.923158333 0.030921815

5. Discussion

In our inventory, 256 rock glaciers were identified in the Aksu and Lepsy River basins
(northern Zhetysu Alatau). This inventory of the selected basins made it possible to create
a novel digital database on the available rock glaciers in the region, develop cataloging
methods according to international standards, and study the features of the region. Based
on the experience we gained, even more work is underway to scale the inventory to the
entire Zhetysu Alatau region.

Of the main features of rock glacier formation conditions, it is worth noting that
northern slopes receiving a lower PISR may represent the most favorable conditions for
rock glacier formation, even at lower elevations.

Additionally, glaciers, as the main source of rock glaciers of moraine origin, are rapidly
decreasing in size. According to the authors [61], the rate of annual glacier reduction in
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the Aksu–Bien and Lepsy–Baskan River basins for the period from 1956 to 2011 is 0.7%.
According to Kaldybayev et al. [84], for the period of 2001–2016, Aksu–Bien and Lepsy–
Baskan shrank in glacier area by 1.2% a−1 and 1% a−1, respectively. In the future, this
accelerated shrinkage rate may lead to the appearance of more rock glaciers of moraine
origin in the region. It is widely accepted, and many scientists believe, that glaciers with
less favorable climatic conditions turn into rock glaciers [19].

The glacier area of the region was obtained from Kaldybayev et al. [84]. The ratio
between the area of rock glaciers and the area of glaciers (Figure 12) was significantly higher
for the Lepsy basin than for the Aksu basin. This ratio can be considered an indicator of
the predominance of glacial and periglacial activity in the region. It can be concluded that
periglacial activity in the Lepsy basin prevailed over glacial activity. However, this analysis
was simply an attempt to understand the relationship and should be treated with caution
due to the lack of comprehensive field observations and validations.
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Figure 12. Distribution of the ratio between the area of the rock glacier and total glacier area.

5.1. InSAR Technology Ambiguities

In terms of kinematic-information-collection methods, InSAR time series analysis has
great potential for monitoring low-amplitude movement velocities, but this method is not
without significant limitations.

The main limitations that arise when calculating displacements using radar interferom-
etry methods are the following: (a) The lack of calculation of displacements measured on
moving sections, and the slope displacement projection calculation provides information on
displacements in 3D projection; it is worth noting that the magnitudes of the displacements
of moving segments on the northern and southern sides are calculated less accurately,
even when processing data from the ascending and descending orbits of the satellite; and
(b) estimating low-speed moving sections (displacement rates less than 3 cm per year)
is insufficient since interferograms with a long timeline contain too much noise, while
slow-current displacements are better distinguished by pairs with a large time interval.

The problem of InSAR sensitivity is well known and it causes many issues, especially
for landforms with a very low offset. Projecting the LOS offset onto the intended direction
of travel (i.e., along the steepest slope) does indeed provide more representative results [85],
but the rates are probably still somewhat underestimated. Rock glaciers in areas with poor
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InSAR sensitivity are included in the inventory even if their line-of-sight velocity is <1
cm/yr for this reason. Their activity is classified as “undefined”.

5.2. Comparison with Previous Studies of Tien Shan Rock Glaciers

Previous studies of rock glaciers in the Eastern Tien Shan are limited. According to
Gorbunov and Titkov [48] active rock glaciers in the Zhetysu Alatau are confined to the
zone between 2300 and 3500 m, whereas relict rock glaciers occur down to 2100 m. The
bulk of the active near-glacier (moraine-derived) rock glaciers are concentrated within
the elevational range of 3000–3200 m, whereas the bulk of the active near-slope (talus
derived) rock glaciers are found between 2900 and 3100 m a.s.l. The belt of rock glaciers
is 200–300 m lower than in the Northern Tien Shan mountains corresponding to its more
northerly latitude [49]. These findings are generally consistent with our inventory. For
the sections of the two basins analyzed in our work, the following altitude ranges were
identified from 2600 m ASL to 3720 m ASL, which means an increase in the lower limits
of the placement of rock glaciers by 300 m higher and an increase in the upper limits by
220 m. The highest surface velocity was found at altitudes of 3000–3400 m ASL (Figure 13).
Most likely, this is due to the fact that 68% of the total area of the inventoried rock glaciers
is located in this interval.
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The mean size of rock glacier in the Northern Tien Shan is 0.27 km2 [6]. The highest
rooting zone of a rock glacier is situated above 4000 m and the mean elevation is 3480 m.
Wang [40] compiled an inventory of active rock glaciers for the Boro-Khoro area (Eastern
Tien Shan). Despite the more northern location of the Zhetysu Alatau than the Boro-Khoro
ridge, the average PISR value for the slopes of the northern and southern exposures is
higher by 1.04 × 105 W m−2 and 1.14 × 105 W m−2, respectively. For both ranges, north-
facing slopes are more favorable for rock glacier formation than south-facing slopes. The
detected displacement rate in the study region reaches 240 mm yr−1, which is several times
less than in Boro-Khoro where, according to researchers, the rates reach 114 cm yr−1. The
average area of a rock glacier in the basins of the Aksu and Lepsy Rivers was 0.11 km2,
while it was 0.35 km2 on the Boro-Khoro ridge [40]. Additionally, the ratio of types of rock
glaciers of talus and moraine origins is 61% and 39%, respectively, while in Boro-Khoro,
the ratios are 31% and 69%, respectively.
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5.3. Building a Digital Data Catalog That Meets International Standards

For the entire period of observations of rock glaciers in the Zhetysu Alatau, no practical
catalog was developed; there were only oral reports from researchers and some field
observations of individual rock glaciers. In [53], the author claims that there are at least 850
active rock glaciers in the entire Zhetysu Alatau, while no specific works, inventories, or
catalogs have been found in the archives. In our work, for the first time, we have digitalized
rock glaciers in the combined watersheds of the Aksu and Lepsy Rivers of the Zhetysu
Alatau and compiled a catalog.

However, at the same time, the most studied rock glacier of Central Asia is located in
Zhetysu Alatau, which is Nizkomorenny (Figures 1 and 14). The first cycles of observations
on it were started in 1948 by Palgov N.N. [50] and continued until the 1990s. The formation
of the rock glacier is associated with the glacier located above, from which the moraine
broke off and began to move down the slope with a steepness of 15 degrees, acquiring
the form of a rock glacier. The steepness of the frontal ledge is 40–45◦. For 34 years
(observation periods 1949–1953–1959–1964–1970–1982), the module of the surface velocity
of the rock glacier was 0.17 m/year, the maximum was 0.35 m/year, and the total value of
its movement was 8.91 m [86].
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In the above series of differential interferograms (Figure 14) for the Nizkomorenny
rock glacier, three areas of movement are clearly distinguished: in the central part of the
rock glacier, significant changes in the movement field are noted over 48 days; motion
zones are also noted on two frontal slopes of the rock glacier. It should be noted that the
two main frontal slopes move with different signs of movement: the first actively gives
off mass, while the second one accumulates mass. It bears emphasis, that the described
rock glacier has a history of observations of about 70 years and still retains its activity. This
glacier has an annual surface velocity rate of −45–−250 mm yr−1 (these values are taken
from the surface velocity map by the SBAS method for the 2017–2021 period).

6. Conclusions

This study provided the first comprehensive up-to-date documentation on the charac-
teristics of rock glaciers in the Aksu and Lepsy River basins of the Zhetysu Alatau.

A total of 256 active rock glaciers covering an estimated area of 28.5 km2 were invento-
ried and mapped by combining the use of SAR interferometry and optical imagery from
Google Earth.

The average lower height of rock glaciers in this part of the Zhetysu Alatau was
3036 m ASL. About 39% of rock glaciers were of moraine origin, and 61% of them were
talus-related. The largest area of rock glaciers was located between 2800 and 3400 m ASL
and covered 24.5 km2; this was almost 86% of the total area of the inventoried rock glaciers.

Most rock glaciers had a northern (northern, northeastern, or northwestern) ori-
entation, which indicated the important role of solar insolation in their formation and



Remote Sens. 2023, 15, 197 17 of 20

preservation. Slopes with lower PISR favored the development of rock glaciers. The height
of rock glaciers generally increased from east to west and decreased from south to north,
indicating the effect of latitude and longitude on rock glacier location by height.

We also conducted a detailed study of differential interferograms with different time
bases to map the surface flow of the Nizkomorenny rock glacier. We found two fast-moving
branches in the lower part (frontal slope) of the rock glacier, and a flow zone in the central
part of the rock glacier was also relatively active. More importantly, we saw active areas of
multidirectional movement throughout the body of the rock glacier.

This inventory has provided a baseline dataset for further studies of rock glaciers
as a reservoir, as well as for studying permafrost for slope instability, water resources,
and greenhouse gas emissions. The successful application of the proposed method in the
Zhetysu Alatau demonstrates that this approach can be applied to other high mountain
regions of the world, thereby helping to fill gaps in our knowledge of mountain glaciers on
a global scale. This new knowledge will be useful in inferring the distribution of alpine
permafrost in high mountains.
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Abstract: An updated glacier inventory is important for understanding the current glacier dynamics
in the conditions of actual accelerating glacier retreat observed around the world. Here, we present a
detailed analysis of the glaciation areas of the Zhetysu Alatau Range (Tien Shan) for 1956–2016 using
well-established semiautomatic methods based on the band ratios. The total glacier area decreased
by 49 ± 2.8% or by 399 ± 11.2 km2 from 813.6 ± 22.8 km2 to 414.6 ± 11.6 km2 during 1956–2016,
while the number of glaciers increased from 985 to 813. Similar rates of area change characterized
the periods 1956–2001, 2001–2012, 2012–2016, and 2001–2016: −296.2 ± 8.3 (−0.8% a−1), −63.7± 1.8
(−1.1% a−1), −39.1 ±1.1 (−2.2% a−1) and −102.8 ± 2.9 (−1.3% a−1) km2, respectively. The mean
glacier size decreased from 0.57 km2 in 2001 to 0.51 km2 in 2016. Most glaciation areas of the Zhetysu
Alatau faced north (north, northwest, and northeast), covered 390.35 ± 11 km2, and were located in
altitudes between 3000 and 4000 m.a.s.l. With shrinkage rates of about −0.8% and −1.3% a−1 for the
periods of 1956–2001 and 2001–2016, our results show that study area has the highest shrinkage rate
compared to other glacierized areas of Central Asian mountains, including Altai, Pamir, and even the
inner ranges of Tien Shan. It was found that a significant increase in temperature (0.12 ◦C/10 years)
plays a main role in the state of glaciers.

Keywords: inventory; glacier shrinkage; climate change; Eastern Tien Shan; the Zhetysu (Dzhungar)
Alatau

1. Introduction

In arid and semiarid regions with a low amount of precipitation during the summer,
glaciers play a vital role in forming river flow, as melt water is released from the ice when
other sources, such as melting snow and the end of the wet season, are exhausted [1,2]. The
function of glaciers as a “Water Tower” is of great importance, especially in arid regions,
where there is often a shortage of water in the form of rain and snow [3,4]. This case is
clearly visible in the Tien Shan, one of the largest mountain systems in the world, located in
the Central Asian region. Here, in the summer, glaciers make a significant contribution to
the provision of fresh water reserves in the densely populated arid lowlands of Kyrgyzstan,
Kazakhstan, Uzbekistan, Turkmenistan, and Xinjiang (China) [5–7].

The semiarid and arid climate typical of most regions of Central Asia is characterized
by unique water-dependent ecosystems, and for millennia, human communities have
developed in close interaction with limited natural water resources such as rivers, lakes,
and areas of shallow groundwater [8]. It has been demonstrated that even a basin with a
<5% glacier surface fraction can provide significant amounts of meltwater, contributing to

Remote Sens. 2023, 15, 2133. https://doi.org/10.3390/rs15082133 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15082133
https://doi.org/10.3390/rs15082133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0275-2463
https://orcid.org/0000-0002-9227-4695
https://orcid.org/0000-0003-1611-7775
https://orcid.org/0000-0002-1320-1835
https://doi.org/10.3390/rs15082133
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15082133?type=check_update&version=2


Remote Sens. 2023, 15, 2133 2 of 20

river runoff during summer, when water is needed most for irrigation [7,9]. People living
in the dry lowlands of Central Asia (irrigated agricultural land and oases) depend on river
waters originating from the Tien Shan mountains [10].

Arid lowlands and deserts, where irrigation during the growing season usually de-
pends on glacial meltwater, are common along the entire border of the Zhetysu Alatau
(Dzhungar) mountain range. In our study area, the waters of the Karatal, Koksu, Lepsy,
Aksu, and other rivers are intensively used for irrigation. In the basins of these rivers,
the water withdrawal for irrigation of almost 200 thousand hectares is estimated at
1.3 km3/year. Rational water use for irrigation and hydropower needs is impossible
without comprehensive information on the glaciation areas change (shrinkage) and their
volume. Glacier shrinkage leads to a reduction in their long-term moisture reserve, glacial
runoff decrease, and the violation of the natural self-regulation of river flow. This prob-
lem is solved by monitoring modern glaciation, which should be carried out not for 1–2
“reference” glaciers of a mountainous country where field observations are carried out (an
example is the well-known Tuyuksu glacier in the Ile Alatau), but for large glacial systems
in general, numbering hundreds and thousands of glaciers. It is also necessary to assess
the rate of reduction in ice reserves and the prospects for the existence of these systems in
the near and distant future [11].

The first detailed inventory of the Zhetysu Alatau glaciers, the Catalog of Glaciers
(Catalogue of Glaciers of the USSR, 1969, 1970, 1975, and 1980), was published in 1969 and
was based on aerial photographs from 1956. Cherkasov (2004) compiled a second glacier
inventory using 1:25,000 topographic maps based on aerial photographs taken in 1972.
However, two more limited surveys of glaciers conducted in the 1990s and 2000s have not
been released [12].

In subsequent years, several authors studied the glacier area change in the entire
Zhetysu Alatau and its subregions. They estimated the overall glacier area decrease [13–15].
The study by Severskiy et al. [15] was especially detailed, where the authors conducted a
general analysis and assessment of changes in the glaciation areas of the entire Zhetysu
Alatau (in 1956, 1972, 1990, 2000, and 2011). They analyzed changes between 1956 and 1972
based on the glacier catalog of the USSR, which was created using topographic maps at
a scale of 1:25,000 based on aerial photographs taken in 1972. Our catalog of the Zhetysu
Alatau glaciers was carried out for 2000 and 2011, similar to the catalog content mentioned
above, on the basis of state survey maps at a scale of 1:25,000, Landsat 7 ETM+ satellite
images, a digital elevation model (DEM), and surface reference points. According to their
studies, Severskiy et al. [15], in the period 1956–2011, found that the area of glaciers of
the Zhetysu Alatau decreased from 813.9 km2 [16–19] to 465.17 km2, and the total annual
reduction rate was 0.78%. Owing to climate change and other factors, over the past few
decades, nearly 97.52% of glaciers in the Tien Shan mountains have been shrinking at a
rapid rate [20], characterized by a decrease in the total area and mass of glaciers by about
27 ± 15% [4], as well as the fact that, in the near future, this process of shrinking glaciers
will continue [21,22].

Despite the vulnerability of the Zhetysu Alatau glaciers to area shrinkage in the
region [13], ground monitoring and actual area assessment have not been carried out
during recent years since 2012. Thus, a continuous glacier inventory is essential in the
Zhetysu Alatau.

The main aim of this article is the investigation of glaciers and their changes in the
Kazakh part of the Zhetysu Alatau based on remote sensing data. In particular, the major
objectives are: (1) to create an updated catalog of the Zhetysu Alatau glaciers using remotely
sensed data, to obtain and analyze the characteristics of glaciers in order to compare them
with other previous inventory works, (2) to analyze the glacier area change dynamics from
1956 to 2016, (3) to analyze the main climatic trends (temperature and precipitation), (4) and
to correlate the estimated changes in glacier areas with climatic, topographic parameters,
and other characteristics.
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2. Study Area

The Zhetysu Alatau (Dzhungar Alatau) is a mountain system stretching from west–
southwest to east–northeast along the state border between Kazakhstan and China. The
range length is 450 km, the width fluctuates from 50 to 90 km, and the maximal height
reaches up to 4622 m (Semyonov-Tyan-Shansky peak) (Figure 1). The total area of the
Zhetysu Alatau mountain ridge, including the river basins of the Borotala Mountains in
China, is about 40,000 km2 [23]. It is located at 45◦ N, within 79–82◦E. Its southern border
is the Ile River, the northern one is the Balkhash Plain, and the northeastern one is the
Alakol Lake and Dzhungar Gates. The longitudinal valleys of the rivers Koksu in the west
and Borotala in the east divide the Zhetysu Alatau into two large ridges parallel to each
other—North Central and South Central [24].
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Figure 1. An overview map with the boundaries of the basins and the weather station.

The climate of the Zhetysu Alatau is mainly continental. It is under the influence of
arctic, polar, and tropical air masses, which undergo significant transformation on the way.
Arctic air masses come from the north and northwest, from the Barents and Kara seas. They
come mostly in the first half of the winter period. Their invasion is accompanied by a sharp
drop in air temperatures.

The average long-term air temperature in the lower part of the glacial zone (at altitudes
of 3200–3600 m) during the accumulation period is −8–−10 ◦C; in the upper part (above
4000 m), it drops to −14–−16 ◦C. As the terrain rises above sea level, differences in climatic
conditions are clearly manifested. According to the climate references [25], the coldest
month is January, the temperature of which ranges from −7.5 at meteorological station
(MS) Sarkand to −13.2 ◦C (MS Usharal). The warmest month is July, when the temperature
reaches 24.3 ◦C in the foothill areas and 17.7 ◦C in the mountains. The region’s climate is
characterized by well-developed temperature inversions, i.e., the temperature increases
with elevation. The minimum air temperatures drop to an average of −18.3 ◦C in the flat
areas and −13.4 ◦C in mountainous areas. The absolute minimum reaches −44 ◦C, and the
absolute maximum is 44 ◦C. The warm season, with a mean daily air temperature above
0◦, varies from 116 days to 137 days in mountainous areas. The duration of the frost-free
period in most of the territory is 123–161 days. Spring frosts stop mainly at the end of
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April (23–29 April), and the first autumn frosts in most areas are observed at the end of
September and the beginning of October.

The annual rainfall is from 298 mm to 520 mm in the mountains. In the warm season
of the year (from April to October), 50–65% of the annual precipitation falls. The average
annual wind speed is 1.1–2.7 m/s. Steady snow cover is observed in late November–early
December. The snow cover melting is observed in the end of March. The duration of the
stable snow cover is 111–155 days. The average of the maximal heights of snow cover does
not exceed 15–33 cm during winter [26].

3. Materials and Methods
3.1. Utilized Images

We used data from optical satellites such as Landsat ETM+ and Landsat OLI. We also
used high-resolution imagery from Google Earth (QuickBird satellite) to define glacier con-
tours in difficult areas and assess the mapping accuracy. We selected only two observation
months (10 August to 25 September) due to minimal snow cover. The scenes were taken on
cloudless days of this period, but some of the edges of the glaciers were hidden by shadows
from the rocks and the walls of the glacial cirque. In total, six Landsat 7 (ETM+) scenes
were used for 2001–2012, and three Landsat 8 (OLI) scenes for 2015–2016.

Landsat (level L1T) georeferenced imagery was provided by the USGS Center for
Earth Observation and Science (EROS) (http://earthexplorer.usgs.gov/ (accessed on 20
December 2020)). A panchromatic channel with a resolution of 15 m was used to improve
the quality of maps using the pan-sharpening tool (Table 1).

Table 1. List of images used in the study.

WRS2 Path-Row Date Satellite and
Sensor

Spatial
Resolution (m)

Suitability of
Scenes

Suitability of
Scenes

148-029 22 August 2001 Landsat ETM+ 15/30/60 Main

147-029 18 August 2002 Landsat ETM+ 15/30/60 Additional
information Seasonal snow

147-029 12 September 2011 Landsat ETM+ 15/30/60 Additional
information Filling the gaps

148-029 3 September 2011 Landsat ETM+ 15/30/60 Additional
information Filling the gaps

147-029 13 August 2012 Landsat ETM+ 15/30/60 Main

148-029 20 August 2012 Landsat ETM+ 15/30/60 Main

147-029 1 September 2016 Landsat OLI 15/30/60 Main Seasonal snow,
shadow areas

148-029 24 September 2016 Landsat OLI 15/30/60 Main Seasonal snow,
shadow areas

148-029 21 August 2015 Landsat OLI 15/30/60 Additional
information Shadow areas

Due to the unfavorable natural and climatic characteristics of the Landsat 7 ETM+
images for 2001, covering the eastern part of the Zhetysu Alatau, an additional image from
the Landsat 7 ETM+ satellite of 2002 was used.

Since Landsat 8 OLI was only launched in 2013, and the Scan Line Corrector (SLC) in
the ETM+ instrument (Landsat 7) failed in 2003, the 2012 ETM+ images required prepro-
cessing, namely the Gap filling process, that is, filling in the missing pixels. This procedure
was carried out in the ENVI software using the Gap Fill module. The images from 2012
were used as the “master file”, and the images from 2011 were used as the “slave file”
(Figure 2).

http://earthexplorer.usgs.gov/
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Figure 2. Filling gaps in the Landsat ETM+ (2012).

In addition to the 2016 Landsat OLI satellite images, the 2015 Landsat OLI images were
used due to improved shadow conditions, which in turn allowed more detailed mapping
of the glaciers.

The satellite imagery available on Google Earth for glacier contouring served as a
visual guidance tool, with data coming primarily from very-high-resolution optical sensors
(Google Earth 2017). Unfortunately, it was not available for all study areas.

The ALOS PALSAR DEM was used to extract watersheds and topographic information
for the glacier inventory. For the dynamics of the glacier areas, we analyzed the 2nd edition
of the 13th volume of the Catalog of Glaciers of the USSR (Glaciers On The Territory of Zhetysu
Alatau) 1969, 1970, 1975, and 1980, published on the basis of aerial photographs of 1956.

3.2. Climatic Data

An assessment of the dynamics of spatial and temporal changes in the amount of
precipitation and temperature indicators in the study area was carried out on the basis
of long-term observation data analysis of the Usharal, Taldykorgan, Sarkand, and Kogaly
meteorological stations (according to the Manual on the Global Observing System. Volume
I—Global Aspects, World Meteorological Organization 2015 (WMO-No. 544) observations
at the meteorological stations of the RSE “Kazhydromet”, carried out every three hours
at the main standard (00:00, 06:00, 12:00, and 18:00) and intermediate times (03:00, 09:00:
00, 15:00, and 21:00)). Detailed information about the mentioned meteorological stations is
illustrated in Table 2.

We also used data from the Republican Hydrometeorological Fund RSE “Kazhy-
dromet” for the period from 1960 to 2021. A constant upward trend in the mean tempera-
tures was observed throughout Kazakhstan. According to Cherednichenko et al., 2015 [27],
the increase in the average annual air temperature is 0.32 ◦C every decade in Kazakhstan.
Atmospheric precipitation demonstrated a slight upward trend (by 2.6 mm/10 years),
mainly due to spring period precipitation, when the increase in some western and northern
regions is 10–20%/10 years. In autumn, the precipitation amounts decrease in some western
and southern regions by 2–12%/10 years. All trends in the average annual and seasonal
precipitation are statistically negligible all over Kazakhstan.
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Table 2. Geographic location of selected weather stations.

Meteorological
Stations (MSs) Elevation (m) Coordinates Description

1 Usharal 385.8 46◦10′N, 80◦56′E
It is located in the desert plain region of

the Alakol depression, Tentek river basin,
eastern part of the Zhetysu Alatau.

2 Taldykorgan 601.3 45◦01′N, 78◦22′E
It is located in the foothill region of the

western Zhetysu Alatau (Karatal
river basin).

3 Sarkand 764 45◦25′N, 79◦55′E It is located on the northern part of the
Zhetysu Alatau (Lepsy river basin).

4 Kogaly 1410 44◦29′N, 78◦39′E It is located on the southern part of the
Zhetusy Alatau (Usek river basin).

The most recommended and useful methods for determining trends in climate change
are nonparametric methods [28]. Therefore, for the assessment of the general trend in
changes in air temperature and precipitation, we used the nonparametric statistical method
of Mann–Kendall with a p-value of 95%. The calculations were carried out in the R program
in the mk.test2 application. The test detects any upward or downward trends in the time
series data. If the p-value is less than the significance level α (alpha) = 0.05, it indicates the
presence of a trend in the time series, i.e., the result is statistically significant; if the p-value
is greater than the significance level, this indicates that the trend has not been detected.

In addition, the analysis of change tendencies in the characteristics of the climatic
regime for the study period was carried out on the basis of calculated linear trends in the
series of observations using the least squares method.

3.3. Methods

F. Paul [29,30] compared the different methods, including the band ratios of Landsat
ETM +(3/5, 4/5) and Landsat OLI (4/6, 5/6), including filters and mapping in shadow
areas [31]. According to his study, the ratio of Landsat ETM + (TM 3/5) and Landsat
OLI (OLI 4/6) is the most reliable, reproducible, and simple method, in parts even better
than manual mapping. Furthermore, this method has been applied by various authors to
glaciers around the world [32].

In this regard, we used a semiautomatic method based on the ratio of bands (Figure 3a).
The technique is based on using the threshold ratio values of the spectral channels of optical
images (Landsat, Sentinel-2) to determine the contour of a glacier. We used the RED/SWIR-
1 channels of the Landsat satellite. The threshold value of 2.1 was set manually through
visual inspection (the clean-ice and snow patch). To clean up the glacier polygon, we used
a median filter (3 by 3 kernel size) (Figure 3b) and then converted it to a vector (Figure 3c).

For mapping glaciers in the shadow areas, we used Band 2 (Blue) with threshold 7400
(set manually by visually checking). For mapping all shadow areas, we applied SRTM
HillShade, which calculated using sun azimuth and other parameters, as in Landsat imagery
metadata. We obtained glaciers in shadow areas as the intersection of Band 2 > 7400 and
Hillshade ≤ 0 (less than or equal to 0) (Figure 3d).

Additionally, the delineation of the glacier tongue, covered with debris, was performed
using additional data, such as thermal band and geomorphological characteristics obtained
from the DEM, as well as Google Earth images. However, debris cover was not a major
problem in defining the glacier boundaries, due to the fact that most of the glacier surface
in this area is pure ice.
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3.4. Uncertainty of Mapping

In order to correctly interpret and estimate the importance of the study, the accuracy
needs to be evaluated. In our previous study [13], uncertainty was estimated with the
buffer method [33,34]. The size of the buffer was chosen to be half of the estimated RMSE,
i.e., 7.5 m to each side, and the accuracy was within ±5% for our study region.

We also determined uncertainty using another independent way, namely, the multiple
digitization of glacier outlines, which is the best method to define the accuracy of mapping
by one analyst [34]. This method gives the most realistic (analyst-specific) estimate for
the provided dataset. Despite the higher workload, this method is recommended for use
instead of the literature value or buffer methods. Following Paul et al. (2013) [29], we
manually digitized four glaciers five times (one time every day) independently, using
a reference dataset with high resolution (Figure 4). Then, the resulting average areas
were compared with the area obtained automatically using TM. As a result, the difference
between the manually and automatically derived area was around 1–3.5 and 2–4.5%,
respectively (Table 3).

Table 3. Comparison of glacier area values.

Glaciers
Manually Delineated

Automated
with TM. km2 Std% Diff%

1 Day 2 Day 3 Day 4 Day 5 Day Mean. km2 Mean-koef.
km2

a 1.4356 1.4085 1.4271 1.4193 1.4302 1.4241 1.4105 1.3958 2.0 1.4

b 2.7081 2.7114 2.7147 2.7275 2.7253 2.7174 2.6913 2.6621 2.0 1.0

c 4.1658 4.1790 4.1970 4.2279 4.2338 4.2007 4.1604 4.0848 2.8 3.4

d 0.3853 0.3860 0.3877 0.3941 0.3923 0.3891 0.3853 0.3716 4.5 4..0
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4. Results
4.1. Glacier Inventory of 2001

According to Landsat data for 2001, we identified and mapped 897 glaciers with an
area of more than 0.005 km2 each, with a total area of 517.4± 14.5 km2 in the basins of 7 large
rivers (including sub-basins) of the Zhetysu Alatau (Table 4). Of these, 126.5 ± 3.5 km2 or
24.4% of the total area of glaciers falls on the western part (Karatal) of the Zhetysu Alatau,
197.2 ± 5.5 km2 or 38.1% on the northern part (Aksu-Bien and Lepsy-Baskan), 59.7 ± 1,
7 km2 or 11.5% on the eastern part (Tentek and Rgayty), and 133.9 ± 3.7 km2 or 26% was
found in the southern part (Khorgos and Usek) (Figure 5).

Table 4. Glacier area change.

Basins
1956 2001 2012 2016 1956–2001 2001–2012 2012–2016 2001–2016 1956–2016 Mean Size

in
2001/2016Area km2 (Count) Area Decrease % (% yr−1)

1 2 3 4 5 6 7 8 9 10 11

Karatal 202.5
(285)

126.5 ± 3.5
(231)

110.3 ±3.1
(221)

102.6 ± 2.9
(220)

−37.5
(0.8)

−12.8
(−1.2) −7 (−1.7) −18.9

(−1.3)
−49.3
(−0.8) 0.55/0.47

Aksu Bien 140.4
(135)

93.4 ± 2.6
(133)

83.1 ± 2.3
(127)

77.1 ± 2.2
(127)

−33.5
(−0.7) −11 (−1) −7.2

(−1.8)
−17.5
(−1.2)

−45.1
(−0.8) 0.70/0.60

Lepsy-Baskan 154 (116) 103.8 ± 2.9
(112)

93.7 ± 2.6
(111)

88.4 ±2.5
(105)

−32.6
(−0.7)

−9.7
(−0.9)

−5.7
(−1.4)

−14.9
(−1)

−42.6
(−0.7) 0.91/0.83

Tentek 75.2 (94) 49.7 ± 1.4
(85)

41.8 ± 1.2
(73)

36.9 ± 1.0
(58)

−33.9
(−0.8)

−15.8
(−1.4)

−12.6
(−3.1)

−26.4
(−1.8)

−51.4
(−0.9) 0.57/0.63

Rgaits 13.1 (22) 10 ± 0.3
(21)

8.2 ± 0.2
(18)

6.9 ± 0.2
(17)

−23.5
(−0.5)

−18.4
(−1.7)

−16.2
(−4.1)

−31.6
(−2.1)

−47.7
(−0.8) 0.47/0.40

Usek 144.8
(233)

84.9 ± 2.4
(219)

73.4 ± 2.1
(202)

64.6 ± 1.8
(197)

−41.4
(−0.9)

−13.6
(−1.2) −12 (−3) −23.9

(−1.6)
−55.4
(−0.9) 0.38/0.32

Khorgos 83.5 (100) 49 ± 1.4
(96)

43.2 ± 1.2
(90)

38.5 ± 1.1
(89)

−41.3
(−0.9)

−11.9
(−1.1)

−11
(−2.7)

−21.6
(−1.4)

−53.9
(−0.9) 0.51/0.43

Total 813.6
(985)

517.4± 14.5
(897)

453.7± 12.7
(842)

414.6± 11.6
(813)

−36.4
(−0.8)

−12.3
(−1.1)

−8.6
(−2.2)

−19.9
(−1.3)

−49
(−0.8) 0.57/0.51

Glaciers <0.005 km2 18.9 (385) 5.1 ± 0.14
(143)

3.7 ± 0.10
(96)

3 ± 0.08
(83)

−72.9
(−1.6)

−27.4
(−2.5)

−19.3
(−4.8)

−41.4
(−2.8)

−84.1
(−1.4) 0.04/0.03
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Figure 5. Glacier distribution in the Zhetysu Alatau between regions.

The average size of the glaciers for the entire mountainous region was 0.57 km2, with
the glaciers of the 1.0–5.0 km2 size class prevailing, with a total area of 221.5 ± 6.2 km2

(Figure 5), which is 42.8%± 2.8 of the total area. Of these, 38%± 2.8 was concentrated in the
northern part (the basins of the Aksu-Bien and Lepsy-Baskan rivers) of the Zhetysu Alatau.

The larger glacier sizes (0.7–0.91 km2) were concentrated in the northern part of the
Zhetysu Alatau (the basins of the Lepsy-Baskan and Aksu-Bien rivers), while the average
sizes of the glaciers in the southern (Usek) (0.38 km2) and eastern part (Rgayty—0.47 km2)
were smaller (Table 4).

Glaciers with a size class of 0.1–0.5 km2 were the most numerous (381 glaciers) in 2001
(Figure 6b).
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Alatau in 2001 and 2016.

Most glaciation areas of the Zhetysu Alatau faced north (north, northwest, and north-
east) (Figure 7a,b) and were located at altitudes between 3000 and 4000 m.a.s.l. (Figure 8).

Glaciers with northern, northeastern, and northwestern exposure were the most
extensive in the Zhetysu Alatau, covering 163.55 ± 4.6 km2, 121.32 ± 3.4 km2, and
105.48 ± 3 km2, respectively, and they accounted for 75.4 ± 2.8% of all glaciers (Figure 7b).
The southern, southeastern, and southwestern sides occupied 13.61± 0.4 km2, 20.96 ± 0.6 km2,
and 14.72 ± 0.4 km2, respectively, and together, they accounted for 9.5 ± 2.8% of all
glaciers. The western side occupied 32.27 ± 0.9 km2, or 6.1 ± 2.8%, and the eastern
side, 47.20 ± 1.3 km2, or 9%, respectively (Figure 7b).
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About 39.4 ± 2.8% of the glaciers of the Zhetysu Alatau were located at altitudes of
3400–3600 m, almost 26.9% at altitudes of 3600–3800 m and about 19.5 ± 2.8% at altitudes
of 3200–3400 m (Figure 8).

In 2001, according to Landsat data, three glaciers with an area greater than 10 km2

were identified and mapped in the Zhetysu Alatau. Two of them were located in the
northern part (in the Lepsy river basin) of the Kolesnik glacier (10.3 ± 0.3 km2) and Bereg
(10.9 ± 0.3 km2), and one in the western part (in the Karatal river basin) of the Bezsonov
glacier (10.3 ± 0.3 km2).

4.2. Glacier Inventory of 2016

In 2016, 813 glaciers with a total area of 414.6 ± 11.6 km2 were identified and mapped
in the Zhetysu Alatau (Table 4). Of these, 102.6 ± 2.9 km2 or 24.7 ± 2.8% of the total area
of glaciers falls on the western part (Karatal) of the Zhetysu Alatau, 165.5 ± 4.6 km2 or
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39.9 ± 2.8% on the northern part (Aksu-Bien and Lepsy-Baskan), 43.8 ± 1, 2 km2 or 10.5%
in the eastern part (Tentek and Rgaity), and 103.1 ± 2.9 km2 or 24.9 ± 2.8% was found in
the southern part (Khorgos and Usek) (Table 4, Figure 5).

In 2016, glaciers with a size of 1.0–5.0 km2 (181.2± 5 km2 ~ 43.7± 2.8%) predominated
in terms of total occupied area, and glaciers with size of 0.1–0.5 km2 predominated in
number (322 glaciers). However, the area of glaciers from the group of 5.0–10.0 km2

increased, and there were no glaciers with an area of more than 10 km2 in 2016 in the
Kazakhstan part of the Zhetysu Alatau (Figure 6a).

The average height of glaciers ranged from 3580 m above sea level (northern slope)
to 3640 m (southern slope); on average, the glacier location was at an altitude of 3615 m
above sea level. Most glacier areas (316.9 ± 8.9 km2) in 2016 belonged to northern exposure
slopes (N, NW, and NE), while the relative number and areas of glaciers facing the southern
exposure parts (S, SW, and SE) were very small (Figure 7a,b).

The glacier ends were located at a mean minimum height of 3407 m.a.s.l., and their
average maximal height was at 3746 m.a.s.l. Figure 9a illustrates the distribution of glacier
area by the maximum and minimum heights. This means that large valley glaciers have
a lower tongue and smaller glaciers have a higher tongue [13]. Additionally, Figure 9b
illustrates the spatial spreading of the average height of glaciers greater than 0.01 km2

in 2016.
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In 2016, there were three large glaciers along the Zhetysu Alatau with a total area of
28.6 km2. Two of them were the Kolesnik (9.6 ± 0.3 km2) and Bereg (9.5 ± 0.3 km2) glaciers
in the northern part (in the Lepsy river basin) and Bezsonov (9.4 ± 0.3 km2) in the western
part (in the Karatal river basin). As we have already noted, in 2016, there was no glacier
with an area greater than 10 km2 along the Zhetysu Alatau.

4.3. Glacier Changes in 2001–2016

As a part of this study, 897 glaciers were identified in 2001 and 813 in 2016, which
were listed in the glacier catalog with a total area of 517.4 ± 14.5 and 414.6 ± 11.6 km2,
respectively (Table 4). The study results demonstrate that changes in the glacier areas of the
Zhetysu Alatau had a significant decrease during the period from 2001 to 2016. Between
2001 and 2016, the total loss of glaciers was 102.8 ± 2.9 km2 or 19.9 ± 2.8% (−1.3% yr−1).

The highest rates of shrinkage of the glacier area were in the eastern (Rgaity and
Tentek) and southern (Usek and Khorgos) parts of the Zhetysu Alatau.

For the period 2001–2016, the glacier area decreased by 31.6 ± 2.8% (−2.1% year−1)
from 59.7 ± 1.7 km2 to 43.8 ± 1.2 km2 in the eastern part, i.e., in the Rgaity river basin, and
by 26.4 ± 2.8% (−1.8% year−1) in the Tentek river basin.

The reduction rate of glacier areas in the northern (Aksu-Bien and Lepsy-Baskan)
and western (Karatal) parts of the Zhetysu Alatau was relatively low. Between 2001
and 2016, the glacier areas belonging to the Karatal river basin (western) decreased
by 18.9 ± 2.8% (−1.3% year−1), in the Aksu-Bien rivers (northern), this shrinkage was
17.5 ± 2.8% (−1.2% yr−1). The smallest reduction in the glacier area in the Zhetysu Alatau
was noted in the Lepsy-Baskan river basin, belonging to the northern part. Between 2001
and 2016, the glacier area in this basin decreased by 14.9 ± 2.8%, and the annual reduction
rate was 1% per year.

The average size of the Zhetysu Alatau glaciers in 2001 was 0.58 km2, while in 2016,
the average size decreased by 0.51 km2. There was a decrease in the average size of glaciers
in all areas; however, only the glaciers of the Tentek river basin (eastern part) increased
from 0.57 km2 to 0.63 km2 on average. This happened due to the shrinking of small glaciers
in the basin. As an example, in 2001, there were 90 glaciers in the Tentek river basin with a
total area of 11.1 km2 up to 0.5 km2 in size, and in 2016, their total area was 5.7 km2—almost
halved—and 45 glaciers remained.

The analysis of the relative change in area compared to the initial area of the glacier
indicated a large relative loss of smaller glaciers (from 0.01 to 0.1 km2) (Figure 10). For
larger glaciers (>1.0 km2), the loss factors were smaller and more similar. The difference in
shrinkage rate between the northern and western slopes was insignificant.

However, there were wide variations in losses, especially for smaller glaciers, while
there were also glaciers of all size classes that only slightly decreased. The total area loss
was higher for larger glaciers, and the average glacier height increased by 24 m, while the
average minimal glacier height increased by 42 m from 3367 to 3409 m.a.s.l. over the period
2001–2016.

4.4. Temperature and Precipitation Trends

The resulting estimates of air temperature trends showed that the temperature increase
occurred at all stations in all seasons and months of the year. However, there were some
peculiarities in the rate of air temperature increase (Table 5). The table shows that the
most noticeable increase in the average annual temperature was in the desert plain zone of
the Alakol depression (MS Usharal), and the average rate of change was 0.29 ◦C/10 years.
The lowest rates of temperature change were observed in the mountainous regions of
the Zhetysu Alatau (0.12 ◦C/10 years—MS Kogaly). The trends in summer temperatures
(June–August) showed that in mountainous and foothill areas, they had the highest values
and ranged from 0.19 ◦C/10 years (MS Kogaly) to 0.25 ◦C/10 years (MS Taldykogan), and
the lowest were at Usharal MS (0.12 ◦C/10 years). An analysis of changing trends showed
that a steady increase in air temperature has been observed in the study area in recent
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decades; the only exception was the Sarkand MS, where a slight decrease in precipitation
was found. At the same time, in 2019 and 2020, at the three MSs of Taldykorgan, Usharal,
and Kogaly, there was a deficit in atmospheric precipitation. At the same time, the smallest
anomalies were observed at the MS Usharal (12–64 mm), and the largest was observed at
the mountain station of Kogaly, 183 mm, which is 65% of the norm.
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Table 5. Average annual and summer rates of change in air temperature (◦C/10 years) and precipita-
tion (mm/10 years) in 1960–2021.

No. Meteorological
Stations

Average Annual
Rate of Air

Temperature
Change ◦C/10 Years

Average
Summer Air
Temperature
Change Rate
◦C/10 Years

Average Annual
Rate of Change
in Precipitation,

mm/10 Years

1 Taldykogan 0.28 0.25 8.5

2 Kogaly 0.18 0.19 9.3

3 Usharal 0.20 0.20 −2.2

4 Usharal 0.29 0.12 11.4

Thus, in contrast to the air temperature, the change in the precipitation regime in
the study area gives a more variegated picture. The time series of annual precipitation
anomalies for the period 1960–2021 give a general idea of the nature of modern changes in
the precipitation regime. There have been no long-term trends over the last 40 years; there
was an alternation of short periods with positive and negative anomalies in the amount
of precipitation.

The significance of trends for both air temperature and precipitation was assessed for
the summer months, as well as for the average annual and summer periods. An analysis
of the data in Tables 6 and 7 showed that there was a significant upward trend in the
average annual temperature in the study area. This was confirmed by the nonparametric
Mann–Kendall statistic, which gave a positive Z-statistic. The average annual values of
Z-statistics for air temperature reached 4.2276 (MS Usharal).
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Table 6. Mann–Kendall statistics of average annual and summer (June–August) air temperatures for
the study area.

Station Mann–Kendall Stats June July August
Mean Summer

Period
(June–August)

Annual Mean

Air Temperature

Taldykorgan

Z-statistic 2.9339 3.0857 3.7235 3.8145 3.7295

p-value 0.003347 0.002031 0.0001965 0.0001364 0.0001919

Significance (**) (**) (***) (***) (***)

Kogaly

Z-statistic 2.8003 2.7152 2.6483 3.5837 4.2033

p-value 0.005106 0.006623 0.00809 0.0003388 0.00002631

Significance (**) (**) (**) (***) (***)

Sarkand

Z-statistic 2.8913 2.1745 2.2596 3.4379 3.2132

p-value 0.003836 0.02967 0.02385 0.0005862 0.001312

Significance (**) (*) (*) (***) (**)

Usharal

Z-statistic 2.1138 1.0508 1.6219 2.4418 4.2276

p-value 0.03453 0.2933 0.1048 0.01462 0.00002362

Significance (*) N.S. N.S. (*) (***)

***: α = 0.001; **: α = 0.01; *: α = 0.05; α = 0.1 level of significance; N.S.—nonsignificant.

Table 7. Mann–Kendall statistics of average annual and summer (June–August) values of atmospheric
precipitation for the study area.

Station Mann–Kendall Stats June July August
Mean Summer

Period
(June–August)

Annual Mean

Precipitation

Taldykorgan
Z-statistic 0.11541 0.40699 0.94162 0.69853 1.1116

p-value 0.9081 0.684 0.3464 0.4848 0.2663

(N.S.) (N.S.) (N.S.) (N.S.) (N.S.)

Kogaly
Z-statistic 0.48594 −0.31586 0.99015 0.84431 0.62564

p-value 0.627 0.7521 0.3221 0.3985 0.5315

(N.S.) (N.S.) (N.S.) (N.S.) (N.S.)

Sarkand
Z-statistic −0.6378 0.14578 0.82617 −0.12149 −0.14578

p-value 0.5236 0.8841 0.4087 0.9033 0.8841

(N.S.) (N.S.) (N.S.) (N.S.) (N.S.)

Usharal
Z-statistic 0.90517 0.21867 0.49812 1.0995 1.7979

p-value 0.3654 0.8269 0.6184 0.2715 0.07219

(N.S.) (N.S.) (N.S.) (N.S.) (N.S.)

N.S.—nonsignificant.

The average annual trend changes were assessed as significant, since all values
were less than p-value < 0.05. The same picture was observed in the summer period
(June–August). However, if we consider the change in trends by month, there were some
differences. Significant positive trends were noted at the three studied meteorological
stations (Taldykorgan, Kogaly, and Sarkand); the p-values were significantly less than 0.05.
At Usharal MS, there was a significant trend only in June; in June and August, the trends
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were insignificant. The results obtained are consistent with the results obtained in the
Ishfaq Farooq (2021) study. Ishfaq Farooq [14,35] studied the air temperature time series for
Kazakhstan using the M-K statistical test. The results showed that there was a significant
increase in the average annual temperature in Kazakhstan from 1970 to 2017.

The results of the Mann–Kendall test showed that there were no statistically significant
linear trends in precipitation for the period under study, at almost all stations, although
strong interannual variability was observed in the time course. Statistically insignificant
trends were observed at Sarkand MS in the average annual and summer season, but
negative trends were noted (Z-statistic: −0.12149 in summer; −0.14578 per year). Similar
results were obtained for other regions of Kazakhstan by Talipova et al. (2021) [36] and
Shahgedanova (2018) [37]. Thus, we can conclude that climate change for the study area
was observed in the form of an increase in air temperature and statistically insignificant
positive trends in changes in precipitation.

5. Discussion

An intensive reduction in glacier area was confirmed by many previous
studies [2,4,6,10,15,20,24,32,38–45]. However, our results show rates of area reduction
of about −0.8% a−1 for the period 1956–2001, and −1.3% a−1 for the period 2001–2016,
which are the highest values among all the glacial zones of the world and Central Asia, in-
cluding Altai and Pamir [6,33,36,37]. It is important to note that the rate of decline increased
rapidly, and amounted to −0.8%, −1.1%, 2.2%, and −1.3% a−1 for the periods 1956–2001,
2001–2012, 2012–2016, and 2001–2016, respectively. If we compare the rate of reduction in
the area of glaciers in the study area with other glacial regions of the world, then significant
differences can be observed. For example, according to the studies by Tielidze and Wheate
(2018) [46], the reduction in the area of glaciers in the Greater Caucasus over the period
1960–1986 amounted to 11.5% (−0.44% a−1), and for 1986–2014, this figure was 19.5%
(−0.69% a−1). In the research by Tennant et al. (2012) [47], glacier reduction in the Cana-
dian Rockies was −28.3% (−0.4% a−1) in the period of 1919–1985, −7.6% (−0.5% a−1) in
the period of 1985–2001, and −9.9% (2.0% a−1) in the period of 2001–2006. In the European
Alps, according to Paul et. al. (2020) [48], the total glacier area shrunk from 2060 km2 in
2003 to 1783 km2 in 2015/16, i.e., by −13.2% (−1.1% a−1).

However, the features of the geographical location of the Tien Shan mountain system,
in particular the natural zone, as well as the climatic conditions, are significantly different
from the above-mentioned mountain systems. That is, the mountain system is located in
the arid and semiarid region of Central Asia, surrounded by deserts. In addition, the speed
of acceleration is significantly higher compared to other ranges of the Tien Shan mountain
system [5,15,39,40,42].

Such a significant reduction in the areas of glaciers is fully consistent with other
studies, which found that the greatest area loss occurred primarily in the peripheral areas
with low-altitude ranges [10,49]. The study by Aizen et al. (2006) [43], for 1977–2003 in
the inner region of Tien Shan, and Narama et al. (2006) [44], for 1971–2002 in the western
Tien Shan, indicated a glacial decrease of 8–9% or 0.26–0.29% a−1, while glacier reduction
in the peripheral ranges of the northern Tien Shan was remarkably faster. For example,
in the Ile and Kungey Alatau, the glacier reduction speed was −0.73% a−1 for the period
of 1955–1999 [32]. The southern part of the Zhetysu Alatau was studied by Kokarev and
Shesterova (2014) [49]; the calculated rate was about −0.86% per year.

The glaciers of the outer Tien Shan receive the greatest amount of precipitation, and
they are very sensitive to even the slightest temperature changes due to the high rate
of mass transfer. On the contrary, the glaciers of the inner Tien Shan react to climate
change with a longer delay, since the accumulation and, consequently, the mass turnover
of predominantly cold glaciers are relatively small [10,50–53].

This may be due to the peculiarities of the geographical location of the Zhetysu
Alatau, as well as the morphometric parameters of glaciers (the type and size of glaciers),
the location along the altitudinal strip, and factors such as climate. An increase in air
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temperature also has implications for snow cover, such as a decrease in snow amounts and
an increasing intensity of snowmelt [2,54,55].

Regions with predominantly small glaciers are more sensitive to changes due to the
shorter response time of glaciers to climate change [56,57]. It has also been reported that
smaller glaciers with a large edge area-to-length ratio are shrinking faster than larger
glaciers at the same rate of melt [58]. In the Zhetysu Alatau, the vast majority of glaciers
are small, at less than 1 km2 in size. Small glaciers cover more than half of the total area,
which is common in midlatitudes.

An additional reason for the greater loss of area may be the lower height of the glaciers
of the Zhetysu Alatau. An increase in mean annual temperatures without a significant
increase in precipitation will shift the ELA about 150 m upwards per degree [59]. At low
altitudes, this upward shift in the ELA increases the risk of the entire glacier area falling
into the ablation zone (Figure 11). A reduction in glaciers was found at all altitudes of the
study area during the study period. However, the greatest changes in the area were shown
by glaciers lying on the slopes of the western and northwestern exposures. Most of the
glaciers lying on the slopes of the southern exposures were outside the study area, but
those that were not showed a noticeable reduction.
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Moreover, because of the western orientation, the Zhetysu Alatau ranges are also
under the influence of warm western air masses originating over deserts located to the
south of Lake Balkhash [54,60]. The exposure to moist air masses and dominating wind
directions is strongly controlling the ELA elevation on ice [61]. Furthermore, the long-
distance westerly winds are a carrier of fine-grained loess from the deserts of Central Asia
to Tien Shan [60,62], polluting the glacial surfaces and intensifying the melting rate [59].
The frequency of dust storms directed to the Zhetysu Range has increased during the last
few decades [62], so the shrinkage rate of our study area, located in the western Zhetysu
Alatau, is almost three times as severe (−0.86% per year) as the Bortala River in the eastern
Zhetysu Alatau (−0.32% per year) [63].

The rates of temperature change were observed in the mountainous areas of Zhetysu
Alatau (Kogaly MS), where the average rate of change was 0.12 ◦C/10 years. The trends
in summer temperature changes (June–August) showed that mountainous and foothill areas
had the highest values, which ranged from 0.19 ◦C/10 years (Kogaly MS) to 0.25 ◦C/10 years
(Taldykogan MS). A warming climate leads to increasing glacier melt and as well as less
snow accumulation, which in turn causes a lower albedo in the glacier surface [63–65]. The
upward trend in temperature caused an increase in rainfall rate rather than snowfall in the
high-altitude zones, leading to a decrease in accumulation and an acceleration of ablation,
especially during summer [65].

6. Conclusions

We have presented a new and updated catalog of glaciers for the Zhetysu Alatau range
for the period of 2001–2016. Glaciers were detected in all seven river basins for the Zhetysu
Alatau using Landsat satellite images from 2001 to 2016. With area loss rates of about
−0.8% and −1.3% a−1 for the periods of 1956–2001 and 2001–2016, our results showed a
higher rate than other regions of the Central Asian mountains, including Tien Shan, Altai,
and Pamir. In addition, the rates of area shrinkage were significantly higher than other
ranges of the Tien Shan mountain system, which were −0.8%, −1.1%, 2.2%, and −1.3% a−1

for the periods of 1956–2001, 2001–2012, 2012–2016, and 2001–2016, respectively.
For a more detailed analysis of the reason for the sharp reduction in the glacier, we

analyzed climate data using the nonparametric Mann–Kendall test. Analyzing weather
station climatic data, we found a significant increase in temperature at all stations. The
trends in summer temperature changes (June–August) showed that mountainous and
foothill areas had the highest values, ranging from 0.19 ◦C/10 years (Kogaly MS) to
0.25 ◦C/10 years (Taldykogan MS). An analysis of the trends in change showed that a
steady increase in air temperature has been observed in the study area over the past decades.

It was found that climatic conditions play a main role in the state of glaciers. The
location of the region under study on the periphery of the mountain system has less
favorable conditions than the inner ranges. Moreover, a significant increase in temperature
and a slight change in precipitation played a main role in the negative balance of glaciation
in the Zhetysu Alatau.
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Abstract: Assessing glaciers using recent and historical data and predicting the future impacts on
them due to climate change are crucial for understanding global glacier mass balance, regional water
resources, and downstream hydrology. Computational methods are crucial for analyzing current
conditions and forecasting glacier changes using remote sensing and other data sources. Due to the
complexity and large data volumes, there is a strong demand for accelerated computing. AI-based
approaches are increasingly being adopted for their efficiency and accuracy in these tasks. Thus, in
the current state-of-the-art review work, available research results on the application of AI methods
for glacier studies are addressed. Using selected search terms, AI-based publications are collected
from research databases. They are further classified in terms of their geographical locations and
glacier-related research purposes. It was found that the majority of AI-based glacier studies focused
on inventorying and mapping glaciers worldwide. AI techniques like U-Net, Random forest, CNN,
and DeepLab are mostly utilized in glacier mapping, demonstrating their adaptability and scalability.
Other AI-based glacier studies such as glacier evolution, snow/ice differentiation, and ice dynamic
modeling are reviewed and classified, Overall, AI methods are predominantly based on supervised
learning and deep learning approaches, and these methods have been used almost evenly in glacier
publications over the years since the beginning of this research area. Thus, the integration of AI in
glacier research is advancing, promising to enhance our comprehension of glaciers amid climate
change and aiding environmental conservation and resource management.

Keywords: remote sensing; artificial intelligence; machine learning; glacier mapping; snow/ice
differentiation; ice dynamics modeling

1. Introduction

Glaciers worldwide are at serious risk due to climate change. For instance, the mass
loss of mountain glaciers between 2006 and 2016 resulted in a global sea-level contribution
of 335 ± 144 Gt per year [1]. Even though the rate of glacier loss is dependent on the region,
it is expected to have significant environmental and social impacts [2,3]. In fact, nearly 10%
of the world’s population residing in mountainous regions depends on glaciers as a crucial
water source, where they are utilized for agriculture, industry, hydropower generation,
and domestic use [4,5]. Moreover, meltwater from glaciers contributes to the sustenance of
rivers, lakes, and wetlands, supporting diverse aquatic life forms. Additionally, glaciers
play a crucial role in regulating local microclimates [6], influencing vegetation patterns and
providing a habitat for various species, thereby shaping the composition and dynamics
of terrestrial ecosystems [7]. Therefore, evaluating and estimating changes in glaciers
plays a crucial role in projecting future scenarios, particularly in regions where both the
environment and society depend on them.
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For a few decades, organizations and scientists have been developing inventories for
glaciers throughout the world. For instance, the World Glacier Inventory (WGI) contains
data for over 130,000 glaciers, providing information on parameters such as geographic
location, area, length, orientation, elevation, and classification, primarily derived from aerial
photographs and maps. However, the WGI inventory can provide a glacier distribution
in the second half of the 20th century [8]. Similarly, the Randolph Glacier Inventory (RGI)
serves as another valuable database for glaciers; however, its temporal coverage is limited
as most of the glaciers were mapped around the 2000s [9]. Therefore, these inventories
can only serve as baseline datasets, as they are unable to capture the latest changes in
glacier dynamics. However, in the last decade, there has been a proactive effort to generate
additional localized data using remote sensing methods, aimed at enhancing the temporal
accuracy in monitoring glacier changes [10].

Methods relying on optical, synthetic aperture radar (SAR), and multisource datasets
are well known in glacier mapping. Optical imagery (OI) is considered as the primary tech-
nique utilized for glacier extraction, leveraging the significant contrast between the minimal
spectral reflectance of ice and snow in the shortwave infrared and their high reflectance
within the visible spectrum [11,12]. However, its efficacy is constrained by weather vari-
ability and the difficulty in distinguishing glaciers, especially those covered with debris
from surrounding rocks of mountains, due to their comparable spectral characteristics [13].
To address these challenges, SAR data are utilized in glacier extraction, leveraging two
main principles. One principle focuses on the lower coherence observed in glaciers, both
clean and debris-covered, compared to the higher coherence of surrounding bedrock, with
commonly used data sources including Sentinel-1 and ALOS PALSAR [14,15]. However,
the processing of SAR coherence is complex and limited by the presence of non-steady
deformation processes. Additionally, SAR imaging can be hindered by factors such as
layover and shadow effects in steep terrain, which may obscure certain glacier features
and impede accurate mapping [16]. Furthermore, combining different data sources (i.e.,
multisource approach) from SAR, OI, and digital elevation models (DEMs) provides valu-
able insights into glacier dynamics and changes [17]. However, the multi-source method
involves various drawbacks related to data integration complexity, temporal and spatial
mismatch, cost and accessibility, data consistency and quality, as well as interpretation and
validation challenges. Addressing these disadvantages requires careful consideration of
data processing techniques, quality assessment measures, and validation procedures to
ensure robust and accurate glacier mapping results [18].

Transitioning from traditional methods to artificial intelligence (AI) techniques marks
a significant advancement in glacier mapping and monitoring. Indeed, studies have shown
that AI methodologies demonstrate notable efficacy in classifying remote sensing (RS)
data through feature extraction and selection, particularly in hyperspectral images [19,20].
These AI techniques have yielded promising outcomes across various RS applications,
including tree delineation [21], land cover classification [22], building detection [23,24],
fault diagnosis [25], and fault-tolerant control [26]. Moreover, within the realm of glacier
studies, AI methods have also found applications in mapping large glaciers from RS data.

Recently, various advanced methods have been actively employed for evaluating
changes in glacier-covered regions and ice formations during specific periods. Among
these methods, segmentation techniques that rely on visual interpretation and RS are the
most frequently used [27–29]. Moreover, these evaluations have begun to be studied using
decision-tree, supervised, and unsupervised methods [30]. In the same way, band ratios
and manual on-screen digitalization are utilized to classify debris-covered glaciers [31].
Furthermore, a number of researchers have suggested semi-automatic methods for classifi-
cation purposes, and more recently, unmanned aerial vehicles (UAVs) have been employed
to map glaciers with increased precision [32].

These AI algorithms offer powerful tools for glacier mapping applications, enabling
researchers to analyze large-scale glacier datasets more efficiently and accurately than
traditional manual methods. By leveraging the capabilities of AI, scientists can gain deeper
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insights into glacier dynamics, contribute to climate change research, and support informed
decision making in environmental management [33]. Therefore, reviewing the latest works
in this new area is necessary to understand the research trends in terms of AI methods
applied for glacier studies.

In this study, we conduct a state-of-the-art review of the most recent research papers
that have applied artificial intelligence (AI) methods in glacier studies. According to our
observations, the application of AI methods for glacier studies has been active since 2019.
The main reasons may be the increased access and availability of open-source AI tools such
as Pytorch [34], Tensorflow [35], and Keras [36] for the general audience and continuous
improvements in image-based AI techniques, which have significantly accelerated in the
last few years [37]. This makes the recent works particularly relevant and of interest given
the latest advancements.

Thus, the objective of the current state-of-the-art review is to understand the trend of
AI-based method applications in glacier studies, as well as the types and classification of
AI methods, and to evaluate the size and variety of glacier datasets used for training and
validation in addition to the accuracy and efficiency of the selected AI methods in studying
glaciers. Moreover, the reviewed works are classified based on the type of glacier studies,
providing the reader with clear guidance on the AI methods applied for the relevant
studies. For each type of glacier study that uses AI, the research works are reviewed and
discussed in chronological order, offering valuable insights into how this research field
is evolving over time. Additionally, comparative analyses are carried out for each type
of AI-based glacier study. Hence, in the next section, the readers may learn about the
approach to finding the research works among AI-based glacier studies, understanding the
reviewed works in a general manner, and gaining knowledge from classification charts and
illustrations. Furthermore, in the subsequent sections, the classified works are discussed in
more detail, followed by a discussion section. Finally, conclusive remarks, including future
works, are presented in the conclusion section.

2. Review Approach and Overview of the Collected Works

To find research works that apply AI methods and techniques to glacier studies,
we used search terms and expressions such as “Glacier Deep Learning”, “Glacier Ma-
chine Learning”, “Artificial Intelligence in glacier studies”, “Glacier studies with Neural
Networks”, and “Neural Network-based glacier studies” in various databases (Figure 1).
Specifically, we conducted searches in databases such as Elsevier, Wiley, Springer, Taylor
& Francis, IEEE, Copernicus Group, and MDPI. According to the Scimago Journal Rank
(www.scimagojr.com), these publishers, under the category of Earth-Surface Processes, host
the leading journals that publish environmental science, geology, and glaciology research
works. Additionally, we used these terms and expressions in the Google search engine to
find similar works in other databases to ensure comprehensive coverage. As shown in the
flowchart, the research articles found are firstly classified in chronological order.

Furthermore, according to the inventory data of RGI [38], there are 19 glacier regions
in the world, as shown in Figure 2. Once all the works are collected in chronological
order, the second step in classification involves dividing them based on these regions. Such
classification can be considered reasonable since the accuracy of AI models usually depends
on the geological location of the training datasets, and they are often less accurate when
tested on another dataset from a different location [39]. Thus, among the glacier regions
studied using AI methods, the most prominent are those in South West and South East Asia,
designated as Region 14 and 15, respectively, followed by Central Europe and other regions.
This is clearly can be noticed in the second column of the Sankey Diagram illustrated in
Figure 3. Furthermore, considering the main classification of the reviewed works, we focus
on the purpose of AI applications in glacier studies (Figure 3), which are mainly divided
into (i) inventory and mapping, (ii) glacier evolution, (iii) snow/ice differentiation, and
(iv) ice dynamics modeling. Therefore, the main part of the current work, Section 3, is
divided into subsections based on these classifications of glacier studies.

www.scimagojr.com
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Inventory development and mapping of glaciers represent one of the most extensively
studied areas within the field of AI-based glacier studies, and this is clearly shown in the
Sankey diagram (Figure 3). Among the collected and reviewed works, XX papers dealt with
the application of AI methods for inventory and mapping of glaciers. Thus, researchers and
scientists have increasingly utilized AI methods such as machine learning (ML) techniques
and deep learning (DL) techniques to automate the process of mapping glaciers, creating
detailed inventories, and monitoring changes in glacier extent over time.

On the other hand, monitoring glacier evolution becomes crucial for understanding
environmental changes, especially as glaciers worldwide are affected by the consequences
of climate change. Therefore, in the latest works, applications of AI in this area can be
found since AI offers powerful tools for continuously tracking glacier dynamics, enabling
researchers to gain insights into changes in glacier extent, volume, and behavior over time.

There are certain unique applications of AI in snow/ice differentiation and ice dy-
namics modeling that allow us to distinguish glaciers from snow layers and simulate ice
volume changes, mass balance, and their coupling to assess the development of icefields
and ice sheets. Therefore, they are considered as separate areas of glacier studies in the
current review work.

As shown in the flowchart (Figure 1), while reviewing each research work, the main
findings—such as the location and type of the glacier, its classification/type based on
GLIMS (Global Land Ice Measurements from Space) if applicable, the selected AI model,
the input parameters, the datasets and dataset sizes, the accuracy of the model, and the
software used to develop and run the AI model—are summarized in Table 1. Such a
tabulated summary is highly suitable for a quick comparison of AI-based works, and it
contains all the main findings in the form of organized data for readers to evaluate the past
works and plan their future research.
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Table 1. Summary of the review.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

Glacier inventory and mapping

2019 Zhang et al. [40] Parlung Zangbo
Basin, China

Tibetian Plateau
glacier

• Non/partially
debris-
covered
glaciers

• Fully debris-
covered
glaciers

N/A Random forest (RF)

• Landsat-8
images

• Normalized
difference
vegetation
index (NDVI)

• Normalized
Difference
Water Index
(NDWI)

• Normalized
Difference
Snow Index
(NDSI)

• GF-1 PMS
imagery

• Digital
Elevation
Model (DEM)

• 11 topographic
parameters

2755 RF-98.6% (ovearall) EnMAP-Box + DLL

2019 Mohajerani
et al. [41] Greenland

Jakobshavn,
Sverdrup,

Kangerlussuaq,
Helheim

• Tidewater
glaciers N/A U-Net

• Landsat
images

Training data:
images from
Jakobshavn,

Sverdrup and
Kangerlussuaq.

Test data: images
from Helheim glacier

Mean deviation of
96.3 m from the true

calving fonts
Python

2019 Baumhoer
et al. [42] Antarctica

• Sulzberg ice
shelfSkackle-
ton ice shelf

• Wilkes Land
• Victoria Land
• Getz ice shelf
• Ekstromisen
• Wordie ice

shelf
• Oats land
• Marie Byrd

land

• Ice shelves,
dynamic
glaciers

N/A Modified U-Net

• Sentintel-1,
• TanDEM-X

digital
elevation
model

38 pre-processed
Sentinel-1 scenes
90m resolution

TanDEM-X

Average f1-score =
90% N/A
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Table 1. Cont.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

2020 Khan et al. [43] Hunza Basin,
Pakistan Batura glacier

• Glaciers
• Debris-

covered
glaciers

• Non-glaciated
areas

N/A

• Support vector
machine
(SVM)

• Artificial
neural
network
(ANN)

• RF

• NDVI
• NDSI
• NDWI
• New band

ratio (NBR)
• Mean
• Variance
• Homogeneity
• Contrast
• Dissimilarity
• Entropy
• Energy
• Correlation
• Angular

second
momentum

• Slope
• Aspect
• Evaluation

Land surface
temperature

2,688,723 pixels

Training: 70%
Testing: 30%

Kappa:
SVM = 0.89
ANN = 0.92

RF = 0.95

f-measure:
SVM = 91.86%
ANN = 92.05%

RF = 95.06%

N/A

2021 Zhang et al. [44] Greenland
Jakobshavn Isbræ,

Kangerlussuaq,
Helheim glaciers

Tidewater outlet
glaciers

Tidewater outlet
glacier

• U-Net
• DeepLabv3+

with ResNet
• DRN
• MobiNet

Optical:

• Landsat-8
• Sentinel-2

Synthetic aperture
radar images:

• Envisat
• ALOS-1
• TerraSAR-X
• Sentinel-1
• ALOS-2

Training:
110 Landsat-8,

13 ALOS-1,
76 TSX,

140 Sentinel-1

Testing:
74 Landsat-8,
52 Sentinel-2,

48 Envisat,
17 TSX,

90 Sentinel-1,
14 ALOS-2

Test-error studies:
DRN-DeepLabv3+ is

the lowest

Refer to Table 3 from
[44] for full test

results

Python

Open-source in
GitHub:

https://github.com/
enzezhang/

FrontDL3 (accessed
on 7 July 2024)

https://github.com/enzezhang/FrontDL3
https://github.com/enzezhang/FrontDL3
https://github.com/enzezhang/FrontDL3
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Table 1. Cont.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

2020 H. Alifu
et al. [45]

Karakoram—
Pakistan

Shaksgam Valley,
China

North-western
Karakoram region

and Shaksgam Valley
glaciers

Debris-covered
glaciers

Valley, Mountain
glaciers

Machine learning
classifiers (MLC):

- K-nearest
neighbors
(KNN)

- Support
vector
machine
(SVM)

- Decision tree
(DT),

- Gradient
boosting (GB)

- Random
forest (RF)

- Multi-layer
perceptron
(MLP)

• Sentinel-2A
• Landsat-8
• Sentinel-1A
• ALOS DEM
•

Geomorphometric
parameters

• Thermal
Infrared
images

• GAMDAM
dataset

Area 1: 2000 to
20,000 points.

Area 2: 20,000 points
RF-97% Python

2020 Robson
et al. [46]

Chilean Andes, Chile

Central Himalaya

La Laguna catchment

Poilu catchment
Rock glaciers Mountain glaciers CNN with OBIA

• Sentinel-2:
Blue, Green,
Red,
Near-Infrared,
and shortwave
Infrared bands

• SAR coherence
data

Not clear

• User’s
accuracy:
65.9%

• Producer
accuracy:
71.4%

Google
Tensorflow

2021 Lu et al. [47] China High Mountain Asia Debris-covered
glaciers Mountain glacier RF

CNN

• Landsat 8
• NDVI
• NDWI
• NDSI
• Elevation
• Slope
• Aspect
• Shaded relief

Eastern Pamir: 7499
samples

Nyainqêntanglha:
3099 samples

Eastern Pamir and
Nyainqentanglha

User’s accuracy:

• RF = 91.59%,
92.53%

• CNN =
87.96%, 78.75%

• RF-CNN =
97.90%, 90.60%

Producer’s accuracy:

• RF = 97.17%,
98.86%

• CNN =
98.69%, 97.53%

• RF-CNN =
98.33%, 74.54%

Python
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Table 1. Cont.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

2021 Xie et al. [48]
Kashmir Region.

Nepal region

Karakoram glaciers

Nepal glaciers
DCG Mountain,

Valley glaciers

• GlacierNet
• Mobile-Unet
• Res-UNet
• FCDenseNet
• R2UNet
• DeepLabV3+

• Landsat 8
• ALOS DEM
• Slope–

azimuth
divergence
index

• Slope angle
• Tangential

curvature
• profile

curvature
• Unsphericity

curvature

N/A

IOU:

• DeepLabV3+ =
0.8623

• GlacierNet =
0.8599

• Mobile-UNet
= 0.8531

• ResUNet =
0.8399

• FCDenseNet =
0.8265

• R2UNet =
0.8204

• Accuracy:
• DeepLabV3+ =

0.9684
• GlacierNet =

0.9677
• Mobile-UNet

= 0.9660
• ResUNet =

0.9636
• FCDenseNet =

0.9597
• R2UNet =

0.9582

N/A

2022 Xie et al. [49] Northern Pakistan Central Karakoram DCG Mountain,
Valley glaciers CNN

• 11 bands of
Landslide 8

• DEM
• Unsphericity
• Profile

curvature
• Tangential

curvature
• Slope angle
• Slope azimuth

divergence
index

Accucary:

• GlacierNet:
0.9677

• DeepLabV3+:
0.9684

• GlacierNet &
DeepLabV3+:
0.9685

• GlacierNet2:
0.9735

2022 Erharter [50] Austria Apls
Vienna, Burgenland,

Lower Austria,
Upper Austria

RG Mountain glaciers ANN with U-net
• DEM
• Orthophotos

5769 RGs:

• 3722 training
• 800 validation

• Ranged values
using
probability
map

Python, Keras
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Table 1. Cont.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

2022 Kaushik
et al. [17]

12 sites across
Himalaya Himalayan glaciers Glacier lake N/A

GLNet—Deep
convolutional neural

network

• Sentinel-2: B,
G, R, NIR, and
SWIR)

• Landsat 8
• Elevation
• Slope

NDWI

660 images

Accuracy = 0.98
Precision = 0.95

REcall
f-score = 0.95

2022 Tian et al. [51] Pamir Plateau RG Mountain glaciers Channel attention
U-net (U-net+cSE)

• Landsat 8

SRTM DEM data
7821 images

Accuracy:
U-net = 0.9756

GlacierNet = 0.9689
U-net + cSE = 0.9774

2022 Sood et al. [52]
Bara Shigri,

Himachal Pradesh,
India

Valley glacier ENVINet5 • Landsat 8 Accuracy = 91.89%
Kappa = 0.8778

2022 Sharda
et al. [53]

Karakoram Range,
Pakistan DCG Mountain, Valley,

Icefields

• Relief-F
• Pearson

correlation

Hybrid RF-Corr

• Landsat 8
• SRTM 1-Arc

Second GDEM
• Pamir and

Karakoram
inventories

• GLIMS
database

up to 99.8%
• MATLAB

eCognition
developer software

2023 Peng et al. [14] Qilian Mountains,
China Not specified

U-net with LGT
encoder and LGCB

decoder

• SAR
(Sentinel-1),

• Optical
(Sentinel-2)

• Image band
indices

• DEM
• NDSI
• NDWI
• NDVI

2072 glaciers:

• Training: 70%
• Testing: 30%

Accuracy:
U-Net: 0.725

DeepLab V3+: 0.924
Attention DeepLab

V3+: 0.960
Swin Transformer:

0.962
Proposed model:

0.972

NA
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Table 1. Cont.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

2023 Thomas
et al. [54]

Khumbu—Nepal,
China

Manaslu—Nepal
Hunza—Pakistan

DCG

Valley,
Mountain,
Icefields,
Cirque

CNN
with OBIA

classification

• Sentinel-2
• Landsat-8
• ALOS DEM
• Corona KH-4B
•

Geomorphometric
data

69,500 samples
Supraglacial
debris-20,000
Non-glacial

material-20,000
Vegetation-10,000

Lakes-7500
Clean ice glacier-5000

Snow cover-5000
Shadows-2000

• CNN-OBIA—
93.8%

Trimble’s

eCognition
Developer 10.2

TensorFlow library

2023 Hu et al. [55] Western Kunlun
Mountains, China

Western Kunlun
Mountains Rock glaciers N/A DeepLabv3+ with

Xception71 backbone

• Sentinel-2,
• ALOS-1

PALSAR
• InSAR data
• Google Earth

images

Training (90%): 2007
images;

Validation (10%): 223
images;

N/A N/A

Monitoring of glacier evolution

2022, 2020 Bolibar
et al. [56,57] French Alps Écrins, Vanoise,

Mont-Blanc glaciers
Mountain Glaciers Mountain Glacier

ALpine
Parameterized
Glacier Model

(ALPGM) based on
ANN

• DEM
• Glacier

boundary
shape files

• SMB values
• Glacier

topographical
data

32 glaciers in French
Alps

47% in space
58% in time Python

2022 Ambinakudige
and Intsiful [58]

Columbia Icefields,
Canada Icefields

SVM
RF

MLC

• Landsat 8
• NDSI
• NDVI
• NDSI
• NDII

1985, 1991, 2013, and
2020 Landsat satellite

images

70% training
30% validation

Accuracy:
RF = 99.8%

MLC = 99.7%
SVM = 99.7%

Kappa:
RF = 0.995

MLC = 0.993
SVM = 0.994

N/A

2022 Rajat et al. [59] Himachal Pradesh,
India

Himalayan
mountains Mountain glaciers U-Net

• Landsat
• Indian Remote

sensing
• DEM

75% training
25% validation F1 score: 95% N/A
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Table 1. Cont.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

2023 Yang et al. [60] Southeast Tibet Zelongnong ravine Glacier Debris Flow
susceptibility

Valley,
Cirque

• DeepLabv3+
[FCN (fully
convolutional
networks)]

DCNN

• SRTM X DEM
• SRTM C
• TanDEM-x

DEM
• Landsat 7/8

GLIMS

• MIOU (Mean
Intersection
over Union)—
92.15%

• MPA (Mean
Pixel
Accuracy)—
95.89%

Snow/ice differentiation

2022 Prieur C. [61] Zermatt, Switzerland Mont Rose massif Temperate
glacier/snow lines Temperate glaciers

• Feed forward
NN

• SVM linear
kernel

• SVM Gaussian
kernel

Random forest

• Copernicus
DEM

• Landsat 8

Alps’ glacier
inventory from 2015

- Ice/snow—
270,000 pixels

- Glacier—
200,000 pixels

- Mountain
shadow—
140,000 pixels

• Feed forward
NN—98%

• SVM linear
kernel—98.7%

• SVM Gaussian
kernel—99%

Random
forest—99.8%

-

Ice dynamics modeling

2021 Jouvet et al. [62]

• Andes
• Canada
• Caucasus
• Colombi
• Ethiopia

Icefields,
Valley glaciers

Instructed Glacier
Model (IGM) using

CNN
- ≈20 direct speedup

using CNN Python
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As supervised AI methods, random forest, ANNs (artificial neural networks), and
support vector machines (SVMs) are commonly used, while deep learning methods such
as U-Net, DeepLab, and CNNs (convolutional neural networks) represent another type of
AI technique frequently used in glacier studies, as can be noted from the chart in Figure 3.
Both supervised learning and deep learning methods have been actively used for years and
have been deployed at nearly the same rate, except in 2021, when deep learning methods
were dominant (Figure 4). In the next section, which is the main part, the reader will be
able to access a summary of each work along with detailed tabulated information (Table 1)
on the types of glaciers studied, their geographical locations, their classification according
to the GLIMS glacier manual, the AI methods applied, the input parameters, the datasets
used, and the accuracy of the studies.
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3. AI-Based Glacier Studies
3.1. AI for Glacier Inventory and Mapping

Glacier inventory and mapping represent a promising area of application of AI, of-
fering a transformative approach for optimizing the efficiency and accuracy of glacier
monitoring efforts. Through extensive training on a variety of datasets, including satellite
imagery, digital elevation models (DEMs), and historical records, AI models can quickly
learn to recognize various glacier features, delineate glacier boundaries, and quantify
glacier extent with unprecedented accuracy. This capability not only speeds up the creation
of glacier inventories and maps, but also improves the reliability and consistency of glacier
monitoring data, which are critical for understanding glacier dynamics, assessing climate
impacts, and making environmental management decisions. A summary of the works on
glacier inventory and mapping can be found in the first section of Table 1.

Earlier works in AI-based glacier inventory and mapping start from 2019, and one of
them was written by Zhang et al. [40]. In their work, the authors studied glaciers in the
Parlung Zangbo basin located within the Tibetan Plateau. The glacier data were collected
from Landsat-8 images with 30 to 100 m spatial resolutions, and the image textures were
analyzed using the Grey Level Co-occurrence Matrix (GLCM). Moreover, the authors calcu-
lated the Normalized Difference Water Index (NDWI), Normalized Difference Vegetation
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Index (NDVI), and Normalized Difference Snow Index (NDSI) and used them as a dataset
together with topographic parameters from ASTER Global Digital Elevation Model (GDEM
V2), including other DEMs such as TanDEM-X and Shuttle Radar Topography Mission
(SRTM) DEM to obtain elevation change data. Random forest (RF) with 100 decision trees
was selected as the AI method as shown in Figure 5, and there were three steps, prepro-
cessing, RF classification, overlaying of classification results, and accuracy assessment, to
achieve the final mapping. The overall accuracy of the RF classification was 98.6%. The
study showed 1476 glaciers spanning 2011.32 km2 in the Parlung Zangbo basin, where
20.7% of the glacier region was debris-covered and it was between 4600 m and 4800 m above
sea level (a.s.l.). Additionally, 77.5% of the glaciers (1558.79 km2) were located between
4600 m and 5600 m a.s.l., with smaller glaciers (<1 km2) mostly found at lower elevations.
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Mohajerani et al. [41] developed an ML toolkit that utilizes CNNs with a modified
U-Net architecture for automatic detection of glacier calving front margins from satellite
imagery (Figure 6). This approach was trained on a dataset of Landsat images of Greenland
periphery glaciers. The study utilized Landsat 5, 7, and 8 imagery, focusing on the “green”
and “panchromatic” bands, respectively. The optimized 29-layer deep neural network
incorporated 3 × 3 ReLU convolutional layers, 0.2 Dropout layers for regularization, and
2 × 2 MaxPooling for downsampling and upsampling layers. A sample-weighted loss func-
tion and data augmentation techniques were also employed to enhance the performance.
The model’s effectiveness was evaluated not only on validation datasets, but also on a new
glacier with higher spatial resolution to assess transferability across different fjord geome-
tries. After training on the Jakobshavn, Sverdrup, and Kangerlussuaq glaciers, the network
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was tested on the Helheim glacier, achieving a mean deviation error of 96.3 m (1.97 pixels
on average). This accuracy was comparable to manual delineation errors (92.5 m) and
significantly outperformed traditional edge-detection methods like the Sobel filter.
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The study highlights the advantages of using DL for glacier mapping, particularly
in enhancing the efficiency and accuracy of detecting calving fronts. The modified U-Net
architecture employed in this research effectively segments the calving fronts from satellite
images, providing a robust tool for continuous monitoring. The automated system allows
for the rapid delineation of calving fronts, which is essential for understanding regional
changes on the ice sheet periphery over several decades. This method not only reduces the
manual effort required, but also provides a consistent and scalable solution for processing
large volumes of satellite data, paving the way for more detailed seasonal and long-term
analyses of glacier dynamics.

Similarly, a modified U-Net model developed by Baumhoer et al. [42] can process
dual-polarization Sentinel-1 radar data along with elevation information from the TanDEM-
X digital elevation model to accurately delineate the Antarctic coastline (Figure 7). This
method outperforms traditional image processing techniques, especially in challenging
areas with low contrast between ice and water or the presence of sea ice. The ability to
automatically process large volumes of Sentinel-1 data enables the creation of dense time
series to track glacier and ice shelf front movements at continental scales.

The automated approach allows for consistent and objective coastline extraction, over-
coming the limitations of time-consuming manual delineation and subjective interpretations
in complex areas. When tested on multiple sites around Antarctica, the model achieved
average deviations of 78–108 m compared to manually drawn coastlines. Importantly,
the method demonstrated spatial and temporal transferability, successfully generating a
15-month time series of front positions for the Getz Ice Shelf without additional training.
This capability to produce frequent, large-scale measurements of glacier and ice shelf front
dynamics is crucial for improving our understanding of ice sheet mass balance, calving
processes, and potential sea level rise contributions from Antarctica.

The paper by Khan et al. [43] investigates the application of supervised ML tech-
niques to automatically classify glacier layers using a blend of Sentinel-2 images along
with texture, topographical, and spectral data. The study focuses on the Passu watershed
in the Hunza Basin, Pakistan. Three well-known supervised ML methods, namely, sup-
port vector machine (SVM), artificial neural network (ANN), and RF, were explored for
the classification.
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Similar to Zhang et al. [40], the method proposed by Khan et al. [43] involves three
main steps: feature extraction, machine learning classification, and accuracy assessment.
The extracted features encompass spectral reflectance data, textural properties obtained
from the GLCM, and topographical attributes acquired from the DEM. The classifiers
are then trained and tested on the data, producing classification maps for debris-covered
glaciers, usual glaciers, as well as non-glacier areas. The flowchart of the proposed method
is provided below in Figure 8. By comparing the output data with the reference data, an
accuracy evaluation is conducted.
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The results indicated high accuracy for all classifiers, with RF outperforming SVM
and ANN consistently across all classes. The accuracy was measured by means of the
Kappa coefficient, or Cohen’s Kappa, a statistical technique that evaluates the consistency
of agreement between two raters classifying items into mutually exclusive categories. Thus,
the overall accuracy, Kappa coefficient, and other indicators demonstrated the effectiveness
of the proposed method. For example, the overall accuracy reached as high as 92.77%,
and the Kappa value was 0.92. A comparison with existing glacier inventory datasets
revealed discrepancies, highlighting the need for more consistent and reliable classification
approaches. The study suggests that ML approaches, particularly RF, coupled with remote
sensing data, offer robust and accurate means of mapping glaciers and debris-covered
glaciers, which is crucial for water resource management and hazard assessment.

In another research work, to map debris-covered glaciers, Haireti Alifu et al. [45]
developed an ML-based classification technique. As the multi-sensor input data, they
considered SAR coherence, thermal, topographic, and optical data obtained from remote
sensing devices to evaluate the accuracy of ML methods such as SVM, decision tree,
gradient boosting, and k-nearest neighbors. Furthermore, from Google Earth images, the
authors created outlines of debris-covered ice by applying manual delineation (Figure 9).
Northwestern region of Karakoram in Pakistan (Location 1) and Shaksgam Valley in
Western China (Location 2) were selected as areas for testing the ML methods. In particular,
datasets from the testing locations, such as RGI-based vector data and GAMDAM glacier
inventory, were used for validation purposes.
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Figure 9. Proposed flowchart of the methodology [45].

The analysis included how training data size affected (up to 20,000) the accuracy of
the selected ML-based classification methods, and they were compared between each other
to select the most effective method. The outcomes obtained from this increased volume of
training data indicated that RF attained greater accuracy, nearly 97%, compared to the GB
and SVM methods. Furthermore, the data points increased from 2000 to 20,000, increasing
the accuracy of the mapping by 1–2%. When isolated pixels were excluded from the dataset,
the accuracy was further improved by up to 1.5%.

In another work [46], the authors combined a CNN with object-based image analysis
(OBIA) to predict rock glaciers (RG) in an automated way. Thus, the CNN produced a
prediction raster or heatmap, with pixel values ranging from 0 to 1, as shown in Figure 10.
Further, OBIA was used to classify objects from the generated heatmaps. In fact, OBIA, a
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common remote sensing method, segments images into homogeneous objects for subse-
quent classification.
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Two areas with glaciers, namely, the La Laguna (Chile) and Poiqu (Central Himalaya)
catchments, were considered for AI-based RG mapping (Figure 11). The La Laguna catch-
ment, located at the Elqui River’s headwaters in Chile, encompasses glaciers and RG,
contributing 4–13% of the annual streamflow in an elevation range of about 4000 to 6000 m
across an area of approximately 140 km2 and hosting 105 RGs. On the other hand, the
Poiqu catchment, a transboundary watershed in the Himalayas draining into Nepal and
the Ganges River, spans over 2000 km2 with elevations from 1100 to over 8000 m, featur-
ing a variety of glaciers. The study focuses on approximately 1500 km2, including about
140 rock glaciers, with sizes ranging from <0.01 to >1 km2. Approximately 30% of manually
interpreted outlines from the Pléiades imagery (RG_Man) were used for training. The
rock glaciers from the La Laguna and Poiqu catchments had sizes of 2.3 km2 and 6.1 km2,
respectively, while an additional 0.7 km2 was extracted from the Pléiades subset. All these
outlines were integrated with adjacent polygons, merged, and small ones were removed.
To evaluate the accuracy, the leftover polygons—50 from La Laguna, 117 from Poiqu, and 7
from the Poiqu Pléiades subset—were utilized. Around 300 random training points were
created within the RG outlines, along with extra points representing debris-covered glaciers,
pristine ice glaciers, and stable terrains. As a result, the CNN_OBIA classification technique
detected a combined 108 rock glaciers, encompassing an area of 26.0 square kilometers,
out of the total 120 (spanning 20.3 square kilometers in the validation dataset (RG_Man)
across both study areas. This led to an overestimation of 28.0%, with the end-user’s and
producer’s accuracy indicating a relatively high percentage of correctly identified rock
glaciers, but with some instances of false positives.

The study by Lu et al. [47] focused on mapping debris-covered glaciers (DCG) around
the Tibetan Plateau, in particular, High Mountain Asia (HMA). The selected AI models
were RF and CNN. The study employed data from Landsat 8 OLI, thermal infrared sensors,
GDEM (Reflection Radiometer Global Digital Elevation Model), and ASTER (Advanced
Spaceborne Thermal Emission) for the mapping of debris-covered glaciers on the Tibetan
Plateau, namely, in the Eastern Pamir and Nyainqentanglha areas. Various classification
models, including RF and CNN, were compared and integrated to achieve the best classifi-
cation performance. The relationship between debris coverage and ML model parameters
was investigated, revealing that debris coverage directly influences model performance
and aids in detecting both active and idle DCG.

The authors proposed an approach combining RF and CNN models, referred to as
an RF-CNN composite classifier, to enhance the classification accuracy of debris-covered
glaciers. By leveraging the respective advantages of the RF and CNN models, the RF-
CNN composite classifier achieved promising results, providing valuable insights for
glacier mapping and boundary extraction. The study demonstrates that the performance
of ML techniques and the accuracy of glacier extraction are closely tied to the intensity
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of debris coverage, highlighting the importance of considering local characteristics in
mapping efforts.
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Furthermore, the study evaluated the performance of the RF-CNN model against
existing glacier inventory datasets, showcasing its effectiveness in accurately delineating
debris-covered glaciers. The results indicated that the RF-CNN model outperformed
individual classifiers, offering a more reliable approach for glacier mapping. The study
underscored the significance of machine learning methods in improving the efficiency
and accuracy of glacier mapping, laying the groundwork for future research in this field.
Future work will focus on refining the RF-CNN model and exploring its applicability to
SAR images for enhanced glacier classification.

Xie et al. [48] compared the performance of GlacierNet with other CNN-based methods
such as Mobile-UNet, Res-UNet, FCDenseNet, R2UNet, and DeepLabV3+. Each model un-
derwent training using 15% of the total study area, specifically focusing on the Karakoram
glaciers (shown in Figure 12), followed by evaluation across twelve glaciers (represented as
yellow dots in figure) beyond the training domain. These glaciers exhibited diverse surface
and topographical characteristics.

Due to computational intensity, the input image for GlacierNet was sub-sampled
by means of a sliding window approach with a stride of 32 and sizes of 256 × 256 or
512 × 512. As the input consisted of multi-channel images, the networks were configured
with an input layer comprising 17 channels instead of the typical 3 channels for RGB images.
The CNN output is a binary image representing the input data category, which was then
combined into a larger binary image as shown in Figure 13. Additional refinement steps,
including region size thresholding, water index-based removal of excess water pixels, and
hole filling, were applied to enhance the accuracy.
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The analysis revealed DeepLabV3+ as the frontrunner, demonstrating the highest
intersection over union (IOU), F-measure, kappa, and accuracy values, with GlacierNet
following closely behind. The authors noted variations in performance among the models
concerning the estimation of melting zones and terminus, with DeepLabV3+ exhibiting
superior performance in this regard. Notably, terminus estimation emerged as a significant
challenge across the compared models, prompting suggestions for potential enhancements
in network architecture to address this issue.

Furthermore, computational expenses were assessed, revealing FCDenseNet and
R2UNet as the most resource-intensive, DeepLabV3+ as moderately demanding, and
Mobile-UNet and GlacierNet occupying the lower end of the computational cost spectrum,
akin to Res-UNet.

The authors highlighted the suitability of DeepLabV3+ for large-scale glacier mapping
tasks, noting its superior performance compared to other models. The GlacierNet emerged
as a viable option for regional-scale mapping. The careful selection of training data was
emphasized as pivotal given its significant impact on overall model performance.

Later, Xie et al. [49] upgraded the previous model and presented a multi-model
learning architecture, GlacierNet2, for glacier mapping. The architecture is based on data
subsampling and DL using CNN models such as GlacierNet and DeepLabV3+, and it
can estimate the terminus, ablation, and snow-covered accumulation zones of glaciers
(SCAZ). Glaciers of central Karakoram in northern Pakistan were selected to test the
predictive performance of GlacierNet2. Two scenes of Landslide 8 from September and
October of 2016 were used. Notably, mapping glaciers is most achievable in the September–
October timeframe due to the end of the ablation season. The architecture has a 17-channel
input, which receives the following data: 11 bands of Landsat 8; a digital elevation model
(DEM); and five layers of geomorphometric parameters such as unsphericity, profile,
tangential curvatures, slope angle, and slope azimuth divergence index. Thus, GlacierNet2
showed the best accuracy in terms of mapping the ablation zone relative to DeepLabV3+
and GlacierNet.

Erharter et al. [50] applied ANN based on U-net architecture to map rock glaciers of
Austria. The dataset they used consisted mainly of DEM and orthophotos obtained from
Google Maps satellite images. The inventory consisted of 5769 rock glaciers covering an
overall area of 303 km2 from Austrian states such as Vorarlberg, Salzburg, Tyrol, Styria,
Carinthia, and the alpine of Upper Austria. The inputs were images 512 × 512 in pixel
size, with a rough precision of 2 m, meaning the overall size of an image was 1 × 1 km.
The slope maps were computed using the QGIS software based on DEM data. On the
other hand, in the second channel, the greyscale orthophotos were inputted, allowing the
landscape’s surface and vegetation characteristics to be evaluated. Therefore, the output
data consisted of a 512 × 512 binary raster, indicating whether each pixel represented a rock
glacier or not. As shown in Figure 14, the U-Net architecture consisted of five contracting
and five expanding blocks. It employs 2D convolution layers, batch normalization, and
max pooling to reduce the image dimensions. The center part utilizes two conv2d layers,
a two-dimensional convolution operation in neural networks that extracts features from
images using sliding filters to produce feature maps. This is essential for tasks like image
classification, object detection, and image segmentation, and is highly suitable for glacier
studies. The final output is generated through a last conv2d layer with sigmoid activa-
tion (i.e., f (x) = 1/(1 + e−x ), producing a binary output to predict RGs. ANN was trained
using the Adam optimizer at a learning rate of 0.0001. To evaluate the accuracy of the
model, the dice similarity coefficient (DSC) was used, where 0 and 1 referred to dissimilarity
and perfect similarity, respectively, between the ground truth and ANN output.
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Figure 15 illustrates RG examples and an ANN-based probability map. Thus, after
testing thresholds ranging from 0 to 1 in steps of 0.05, the authors identified 0.4 as the
optimal value to divide results into two categories: values ≤ 0.4 represented no rock glacier,
and values > 0.4 indicated the existence of a rock glacier. It should be noted that a maximum
DSC of 0.616 was obtained at a threshold of 0.4.
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Kaushik et al. [17] trained a deep CNN (DCNN), named GLNet, using a dataset of
660 images from multiple sources such as DEM, thermal, microwave, and other remote
sensing techniques, as shown in Figure 16. The dataset was obtained from 12 locations
within and around the Himalayan glaciers, and the overall selected region was divided
into four testing sites.

The GLNet demonstrated a strong performance overall, achieving high accuracy,
F1 scores, and correctness in mapping glacial lakes across multiple test sites. However,
challenges such as erroneous predictions in certain areas, particularly related to shadows
and wet ice pixels, were observed, leading to false positive and false negative results in
some instances. One of the evaluation results is shown in Figure 17, specifically for site
3, in eastern Himalaya. Despite these challenges, the model showed an improvement in
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its performance over different test sites, highlighting its potential, but also the need for
continued refinement to address specific limitations.
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Tian et al. [51] proposed an enhanced U-Net model, incorporating a channel-attention
mechanism, for glacier mapping and evaluated its performance using Landsat 8 OLI and
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Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data obtained
for the Pamir Plateau.

The results demonstrate that the channel-attention U-Net model achieved superior
accuracy in glacier identification compared to the standard U-Net and GlacierNet mod-
els. Furthermore, fine-tuning with a conditional random field (CRF) model effectively
reduced background misidentification, enhancing the overall accuracy of glacier extraction.
Evaluation metrics such as accuracy, recall, and F1-score validated the effectiveness of the
proposed approach, with the channel-attention U-Net model outperforming other methods,
albeit with a slight reduction in recall due to its focus on glacier features.

The Pamir Plateau, characterized by its high altitude and extensive glacier coverage,
served as the study area, highlighting the relevance of the research in a region highly
vulnerable to climate change. Utilizing Landsat 8 OLI imagery and SRTM DEM data, the
study ensured data consistency and accuracy, which are critical for reliable glacier mapping.
The incorporation of ground-truth data from the Global Land Ice Measurements from Space
(GLIMS) database enhanced the reliability of the findings, despite temporal discrepancies
necessitating manual modifications.

Despite the promising results, the study acknowledges certain limitations, such as
challenges in distinguishing glaciers from similar geological features like water bodies
and debris-covered glaciers. Additionally, issues like cloud cover and shadows pose
challenges to optical remote sensing-based glacier mapping, requiring careful selection of
input imagery. Future research directions include exploring additional data sources, such
as synthetic aperture radar (SAR) images, and further refining the model to address specific
challenges like the underestimation of debris-covered glaciers.

Sood et al. [52] proposed a deep learning classifier ENVINet5 based on U-Net ar-
chitecture for glacier monitoring over the Bara Shigri glacier and compared that to the
ANN model. ENVINet5 and ENVI Net-Multi are based on the U-Net model and are
specifically designed for single-class and multi-class classification, respectively (Figure 18).
ENVINet5 utilizes a mask-based encoder–decoder architecture, incorporating features
such as convolutional layers, feature fusion, dimensionality reduction, co-convolution,
and 1 × 1 convolutions. On the other hand, ENVINet-Multi is tailored for classifying
multiple class categories, leveraging the spectral and spatial properties of input datasets
along with field data knowledge. These architectures demonstrate the potential of deep
learning in handling complex classification tasks in remote sensing. The overall accuracy of
the ENVINet-5 was 91.89%, while ANN had 88.38%, and the kappa coefficient was 0.8778
versus 0.8241. The authors mentioned that errors using the ENVINet-5 are high due to the
spatial resolution of the input data and parameter selection during the training process.
Furthermore, the results may be affected by clouds or topographic effects. Therefore, these
effects should be tested.
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In another work, a hybrid feature selection (FS) approach was created to reduce
classifier intricacy and enhance prediction accuracy by Sharda et al. [53]. This method
automatically selects the optimal feature set and removes irrelevant or redundant features.
Additionally, a supervised ML-based classifier was integrated to automatically select
threshold parameters. This reduced the need for trial-and-error iterations in choosing
suitable threshold values for assigning objects to various classes.

The FS method they created involved three stages: initial screening, identifying shared
features, and fine-tuning. The integration of Relief-F and Pearson correlation filter-based
methods improved the feature space. Additionally, the DT classifier enhanced the refined
feature space using the Twoing split criteria. The suggested ML-based automatic classi-
fication approach, as depicted in Figure 19, underwent testing in the Central Karakoram
Region and demonstrated significant resilience across all glacier types.
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mapping [53].

They developed method consisted of three stages: an initial screening stage, a selection
of general properties stage, and a refining stage. Thus, the future space was optimized by
means of Pearson correlation and Relief-F algorithms. Twoing split criteria were used in
the decision tree classifier (DT) classifier to optimize the feature space. Thus, the developed
ML-based automatic classification method was validated based on the glacier data from
the Central Karakoram area and further demonstrated accurate results in other selected
glaciers. The efficiency of the hybrid FS method was assessed by computing the prediction
accuracy via 5-fold cross-validation. Compared to the Relief-F and Pearson correlation
approaches, the hybrid model showed a minor enhancement in classification accuracy of
0.04% for the Siachen glacier and 0.17% for other glaciers.

Peng et al. [14] introduced a transformer-based DL method using a U-Net architecture
with a Local–Global Transformer encoder and Local–Global CNN Blocks in the decoder,
integrating global and local information. Out of 2740 glaciers covering 1514.01 km2 in Qilian
Mountains, China, those between 1 and 10 km2 accounted for the largest glacierized areas
(832.52 km2); our study focuses on 2072 glaciers larger than 0.05 km2, totaling 1498.06 km2.
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Thus, trained on Sentinel-1, Sentinel-2, HMA DEM, and SRTM DEM data, the DL model
achieved 0.972 accuracy.

Thomas et al. [54] introduced a method for mapping debris-covered glaciers (DCG)
that combined a CNN and object-based image analysis into a single categorizing work-
flow. This method was applied to open-source datasets, including thermal (Landsat-8),
multispectral (Sentinel-2), interferometric coherence (Sentinel-1), and geomorphometric
records (Figure 20). Central Himalayan areas in China and Nepal, including the Karakoram
glaciers in Pakistan, were selected to apply and test the developed method.
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A precision–recall graph was produced for supraglacial debris outlines in the Khumbu
region, initially delineated without object-based image analysis (OBIA), with a set probabil-
ity heatmap threshold of ≥0.65. Furthermore, the recall and precision accuracies increased
by 0.9% and 4.2%, as shown by the precision–recall curve. As a result, the F-score accu-
racy was improved up to 2.6%, meaning that by utilizing OBIA after CNN classification,
one can access more accurate mapping of DCG extents compared to relying solely on
CNN classification.

However, as the authors stated, the complex topography and precipitous slopes in
certain sections of the selected areas led to errors of omission in mapping DCG termini.
Specifically, the CNN-OBIA method underestimated the locations of glacier termini with
gradients exceeding 24◦ in the Hunza region and steep tributaries covered with debris in
the Manaslu area. These challenging terrains posed difficulties for the CNN, as there was
limited variation within the samples of supraglacial debris, hindering accurate classification.

In another study [55] of the Western Kunlun Mountains, researchers combined Inter-
ferometric Synthetic Aperture Radar (InSAR) techniques with a DL model, DeepLabv3+, to
create a comprehensive inventory of rock glaciers. The workflow for automatic mapping
of rock glaciers is shown in Figure 21. The deep learning method improved the map-
ping efficiency by automating identification and delineation tasks, while also overcoming
limitations of InSAR-based methods such as coherence loss and insensitivity to certain
movement directions.
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The combined AI and remote sensing approach enabled the first regional-scale map-
ping of rock glaciers in this arid mountain range, resulting in an inventory of 413 rock
glaciers. Of these, 290 were active rock glaciers mapped manually using InSAR, while
123 were newly identified and delineated by the DL model applied to Sentinel-2 optical
imagery. This semi-automated workflow allowed for consistent mapping across a large,
remote area where field studies are challenging. The resulting inventory provides valuable
baseline data on rock glacier distribution, morphology, and kinematics that can inform
further research on permafrost, climate change impacts, and water resources in this high
mountain region.

Thus, as can be seen from the reviewed works dedicated to inventorying and mapping
glaciers, traditional ML classifiers such as RF, SVM, KNN, DT, GB, and MLP were applied.
These methods mostly rely on structured data and use algorithmic approaches for classifica-
tion. In contrast, CNNs and their variants, such as U-Net, DeepLabv3+ with ResNet, DRN,
MobileNet, GlacierNet, Mobile-Unet, Res-UNet, FCDenseNet, R2UNet, GLNet, Channel
Attention U-net, and ENVINet5, are DL models designed for image processing and segmen-
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tation tasks. The difference lies in their architecture: CNNs leverage convolutional layers
to automatically extract features from input images, whereas traditional ML classifiers
use predefined features. Some works are considered hybrid models, like RF-CNN and
ANN with U-Net, as they combine elements from both traditional ML and DL learning
to leverage their respective strengths. Methods like Relief-F and Pearson correlation are
feature selection techniques that can be used to preprocess data for either traditional ML
classifiers or CNNs, enhancing the performance by selecting the most relevant features.

3.2. AI for Monitoring of Glacier Evolution

Monitoring of glacier evolution becomes crucial for understanding the environment
as glaciers worldwide respond to the effects of global climate change. AI offers tools for
continuously tracking glacier dynamics, providing insights into changes in glacier extent,
volume, and behavior over time. By leveraging AI algorithms in conjunction with satellite
imagery and remote sensing data, researchers analyze trends, detect patterns, and forecast
future glacier evolution with sufficient accuracy and efficiency. In this section, we delve
into the innovative applications of AI in monitoring glacier evolution.

Bolibar et al. [56] simulated the annual glacier-wide surface mass balance (SMB) using
a novel algorithm based on deep ANN. This was integrated into an open-source model
for mapping selected regional glaciers. They evaluated the nonlinear deep learning SMB
model and compared it with standard linear statistical methods using data obtained from
French Alpine glaciers. ALPGM is an open-source Python glacier model mainly structured
into: (i) a glacier-wide SMB simulation and (ii) an update module for glacier geometry.
The SMB simulation component utilizes ML algorithms for predictive modeling, while
the geometry update module produces glacier-dependent functions for annual geometry
adjustments. The workflow (shown in Figure 22) execution is configurable via the model
interface, where users are allows to deploy or skip specific steps, including preprocess-
ing meteorological forcings, training SMB models, evaluating model performances, and
updating glacier geometries.
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The machine learning SMB model production workflow involves selecting relevant
topographical and climatic predictors based on literature reviews and sensitivity analyses.
To generate the SMB model, algorithms such as OLS, Lasso, and deep ANN may be
selected, with ALPGM employing popular Python libraries like stats models, scikit-learn,
and Keras with a TensorFlow backend. The presented approach showcases the potential
of DL for the simulation of SMB, capturing nonlinearities not only in spatial, but also in
temporal dimensions. The developed method showed explained variations of 64% for
spatial and 108% for temporal, and accuracy values of 47% and 58% for spatial and temporal,
respectively. This resulted in an r2 value of about 0.7 and an RMSE (root-mean-square
error) of 0.5 m of water equivalent.

Ambinakudige and Intsiful [58] assessed the accuracy of three ML algorithms (SVM,
RF, and MLC) for area classification and estimated the glacier volume change of Columbia
Icefields from 1985 to 2020. All three algorithms classified images with over 99% accuracy
and kappa coefficients of over 0.993, with SVM performing slightly better in identifying
debris. The authors found that 10.4% of the ice/snow area was lost over the study period,
which is consistent with other studies in the same region.

Utilizing Landsat satellite imagery from various years, the study revealed a significant
decline in glacier area and volume in the Columbia Icefield between 1985 and 2020. SVM
classification consistently showcased over 99% accuracy in classifying glacier features across
different years, enabling accurate estimation of glacier changes over time. The observed
trends align with broader global patterns of glacier retreat and volume loss attributed to
climate change-induced warming. Moreover, the study underscores the importance of
continued research leveraging ML methodologies, particularly in assessing glacier changes
on a global scale. The findings not only reiterate the efficacy of ML techniques for glacier
classification, but also emphasize the urgent need for comprehensive studies in order to
understand the impacts of climate change on glacier dynamics. As glaciers continue to
retreat worldwide, the integration of advanced ML approaches with remote sensing data
holds promise for developing reliable records of glacier changes, which are essential for
informing climate mitigation and adaptation strategies.

The study by Rajat et al. [59] applied U-Net to identify and map glacier evolution in the
Himachal Pradesh province of India, leveraging Indian Remote Sensing (IRS) and Landsat
satellite data spanning from 1994 to 2021. The results demonstrated a high identification
accuracy of 95%, with a significantly reduced processing time compared to traditional
methods. The findings revealed a concerning trend of glacial retreat in the region, with the
glaciated area decreasing at a rate of approximately 67.84 km2 per annum over the past
three decades.

Utilizing Landsat satellite imagery from different years, the study evaluated changes
in glacier area and volume, highlighting a substantial loss of approximately 1822 km2 in
glacier area from 1994 to 2021. This decline in glacial coverage underscores the urgency of
understanding and mitigating the impacts of climate change on Himalayan glaciers, which
are crucial water sources for the region.

The U-Net network model employed in the study effectively learns glacier characteris-
tics and enhances feature extraction, leading to improved accuracy in glacier identification.
By integrating deep learning with remote sensing data, the study offers a valuable tool for
monitoring and assessing glacial changes, essential for water resource management and
hydropower planning in the region. Furthermore, the paper suggests avenues for future
research, including exploring the integration of additional variables such as thermal bands
and precipitation data to enhance the machine learning model’s accuracy. Incorporating in
situ observations and debris glacier data could provide valuable insights into the relation-
ship between glacier changes and climate change, facilitating more precise predictions of
future glacier dynamics.

Yang et al. [60] conducted a study on glacier changes using remote sensing (RS) data
and applied a DL technique to assess the risk of glacier debris flow in the region of the
great bend of the Brahmaputra River in the Tibet Plateau, focusing particularly on the
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Zelongnong ravine. Thus, they evaluated the glacier regions in the Zelongnong ravine
using an automated semantic segmentation method trained using remote sensing data
and the DL technique. They proceeded by computing variations in glacier elevation and
volume between 2000 and 2016, examining the nature of changes within the research site.

Subsequently, they partitioned the Zelongnong ravine into five sub-basins, applied
the glacier correction coefficient to enhance the initial geomorphic information entropy
theory, and assessed the susceptibility of glacier debris flow in the Zelongnong ravine.
Furthermore, glacier ablation is influenced by various factors, including slope, aspect,
elevation, and climatic conditions such as sunlight exposure. These factors play crucial
roles in determining the rate of glacier ablation. Therefore, the assessment of the sus-
ceptibility of debris flow can be obtained from the indicator—the ablation volume of the
glaciers. Thus, by categorizing susceptibility grades based on the ablation volume, accurate
predictions regarding glacier debris flow susceptibility can be made. The overall workflow
and schematics of the developed method are shown in Figures 23 and 24.
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Thus, the monitoring of glacier evolution using AI methods is advancing. It is more
complex compared to mapping and inventory studies due to the inclusion of temporal
changes in glaciers. Therefore, the development and testing of such methods require more
time and effort. Nevertheless, it can be considered one of the main areas for future research
in glacier studies using AI.

3.3. AI for Snow/Ice Differentiation

Another opportunity for AI applications arises in the area of snow and ice discrimina-
tion, which represents an innovative solution for optimizing the accuracy and optimization
of remote sensing analysis. Through extensive training on a variety of datasets including
satellite imagery and ground-based observations, AI models can quickly learn to discern
the subtle spectral and textural nuances characteristic of snow and ice, overcoming the
limitations of traditional manual interpretation or spectral analysis methods. This capability
not only speeds up the processing of extensive remote sensing data, but also facilitates
rigorous quantification of the extent of snow and ice, which is fundamental for climate
research, hydrologic modeling, and environmental monitoring initiatives.

In their study, Prieur et al. [61] created an automated procedure that allows snow
lines on glaciers to be identified from remote sensing images. It was tested on temperate
glaciers located in the Alps of Europe. A feed-forward NN, SVM with Gaussian and
linear kernels, and RF were selected as ML methods, and they used data from Landsat 8,
especially data that considered the glacier inventory of the Alps in 2015 and the Copernicus
DEM (Figure 25). The algorithms were designed to systematically categorize each glacier
within the research region, employing a step-by-step binary classification approach. This
process involves identifying and removing shadowed areas and eliminating leftover ice
or snow pixels to eventually create a map that delineates ice and snow coverage on the
glacier. The resulting map may be presented as either a binary map or a probability map,
depending on the chosen method of map extraction. Since glaciers often have ice- and
snow-covered areas devoid of clouds, the developed procedure suggests two techniques to
identify the snow lines on the glaciers. If these methods fail, the mapping of the glacier is
stopped. The initial method involves a modified version of automatic snow mapping on
glaciers (ASMAG) bin decomposition detection process. This approach utilizes the snow
line produced by ASMAG’s procedure as an initialization vector for the detection of active
contours. The alternative approach involves calculating the gradient of the snow cover
map and then applying a threshold to this gradient based on elevation. This is intended to
eliminate the gradient caused by patches of snow in the ablation region of the glacier. Both
approaches provided good accuracy in identifying the lines between snow and glaciers, but
discontinuous snow lines and steep sections of glaciers led to the failure of the methods.

3.4. AI for Ice Dynamics Modeling

AI also has the potential to transform the efficiency and accuracy of calculations in
modeling ice dynamics, presenting another prospective application in this research domain.
By leveraging vast amounts of observational data, satellite imagery, and remote sensing
datasets, AI-based models can capture the nuanced interactions that include ice flow, mass
balance, and calving dynamics. This capability not only speeds up the modeling time,
but also allows researchers to gain a deeper understanding of the multifaceted drivers of
glacier dynamics and their responses to environmental changes.

With this purpose, Jouvet et al. [62] introduced a glacier model (IGM), a novel approach
to simulating ice dynamics, mass balance, and their combination, to estimate the evolution
of glaciers and icefields. Central to the novelty of the model was its utilization of a
convolutional neural network (CNN) to model ice flow, optimized using the data developed
by means of a hybrid Shallow Ice Approximation (SIA) + Shallow Shelf Approximation
(SSA) or Stokes ice flow model. This substitution of the computationally intensive ice flow
component with a cost-effective emulator enabled IGM to model mountain glaciers up to
1000 times faster than traditional Stokes models on central processing units (CPUs), with
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accuracy levels surpassing 90% in terms of ice flow solutions and nearly identical transient
thickness evolution. Leveraging graphics processing units (GPUs) further enhanced speed-
ups, especially for emulating Stokes dynamics or modeling at high spatial resolutions. IGM
is an open-source Python code designed for 2D gridded input and output data, facilitating
effective and user-friendly glacier and icefield simulations.
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The approach applies DL to ice flow modeling, employing CNN to predict ice flow
using topographic properties as well as basal sliding parametrization in a generic man-
ner. Unlike previous methods that emulated specific glacier dynamics from small-sized
ensemble parameters, the neural network emulator in this study is trained from a large
dataset generated from ice flow simulations obtained from state-of-the-art models—PISM
and CfsFlow—equipped with hybrid SIA/SSA and Stokes mechanics at varying spatial
resolutions. Integration of surface mass balance (SMB) and the conservation approach
with the ice flow simulator yields the IGM, facilitating highly efficient and mechanically
advanced ice flow simulations (Figure 26).
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However, IGM’s limitations include dependency on the training dataset’s represen-
tativeness, assumptions of isothermal ice, limitations in boundary conditions, and com-
patibility only with regular gridded data. Despite these limitations, IGM’s computational
efficiency opens new opportunities in paleo ice flow modeling, with applications in recon-
structing glacial cycles, studying landscape evolution, inferring paleo climatic patterns,
and improving global glacier modeling by reducing uncertainties associated with simpli-
fied models. Overall, IGM presents a promising advancement in glacier modeling, with
potential applications in both paleo and modern ice sheet simulations.

The latest two areas of research, snow/ice differentiation and ice dynamics modeling,
are relatively new and have not matured yet compared to the first two classified research
areas. However, researchers have already begun working in these directions, and they are
expected to become areas of greater interest in the near future.

4. Discussion

The most common type of AI-based glacier study consists of mapping and glacier
inventory. In fact, mapping and glacier inventory are crucial for evaluating glacier sizes and
keeping track of them, providing essential data for understanding climate change impacts
and predicting future water resources. These activities help scientists assess glacier health,
contributing to global efforts in managing ecosystems and mitigating natural hazards. Thus,
as can be noticed in the main section above, the earliest methods were classification methods
such as random forest (RF), K-nearest neighbor (KNN), support vector machines (SVMs),
decision trees (DTs), and gradient boosting (GB). In their work, Zhang et al. [40] selected
the number of trees in RF as 100, but there was not any information on how the number
of trees affected the accuracy of the RF in mapping glaciers, nor in testing or training
sample sizes. Alifu et al. [45] compared these classification methods among each other
and showed that RF was the best-performing and most robust ML method by carrying out
hyperparameter analysis optimization. Khan et al. [43] also confirmed that RF performed
better than the neural network method (i.e., ANN) when tested and compared using
26,688,723 pixels (391,907 labeled as debris-covered glacier, 1,354,622 as glacier, and 942,194
as non-glacier areas). The authors also mentioned that the computational complexity to
train ANN is relatively higher. During the model parameter selection, only the learning rate
and momentum were optimized, with fixed settings for other parameters (1000 iterations,
sigmoid activation, and 200 hidden neurons), resulting in optimal accuracy with a learning
rate of 0.1 and momentum of 0.8. Although tuning additional parameters such as the
number of hidden layers, units per layer, batch size, and regularization techniques (e.g.,
dropout, weight decay) could have led to a better performance of ANN, it was not explored
in this study.
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The earliest studies of glaciers using CNN were conducted in 2019. Mohajerani et al. [41]
and Baumhoer et al. [42] developed modified U-net models. The U-Net architecture by
Mohajerani et al. [41] consists of 29 layers with three downsampling steps, increasing
feature channels from 32 to 256, and uses custom sample weights to address class im-
balance. In contrast, Baumhoer’s [42] modified U-Net processes larger 780 × 780-pixel
tiles with four input channels, includes four downsampling and upsampling units, and
features 7.8 million trainable parameters. Both architectures use 3 × 3 convolutions, ReLU
activations, 2 × 2 max pooling, and dropout layers, but differ in the number of layers,
input size, and approach to handling class imbalance. Neither works performed thorough
hyperparameter optimization to fine-tune parameters such as the learning rate, batch size,
number of layers, and dropout rate, which could be used to evaluate the robustness of the
models and potentially enhance their performance.

In other works [47–53], the authors proposed the combination of two methods into a
hybrid AI approach to map glaciers, hoping for better accuracy compared to non-hybrid
methods. For example, Lu et al. [47] combined RF with CNN and showed that the hybrid
approach performs better than RF-only and CNN-only approaches in terms of user accuracy.
However, in terms of producer accuracy, RF showed a better accuracy. Thus, the author
clearly stated that due to the limited size of the glacier dataset in their experiment, the
advantages of hybrid RF-CNN over traditional ML methods (i.e., RF and CNN) were not
evident. In fact, the accuracy of the models depends on the testing data. For example,
Kaushik et al. [17], in their study, showed that their developed GLNet method performed
with an accuracy of 0.99 for site 1, while for site 2, this was reduced to 0.80, which is
significantly low. They described this reduction in accuracy as being due to the presence of
frozen and partly frozen lakes in the testing data, which was not accounted for during the
training of GLNet.

The development of CNN-based models for glacier studies further continued and was
actively studied by the authors, Xie, Asari, and Haritashya [48,49]. They initially developed
the so-called GlacierNet and CNN segmentation model, and performed comparative analy-
ses of their model with Mobile-UNet, Res-UNet, FCDenseNet, R2UNet, and DeepLabV3+.
Based on their comparative analysis, DeepLabV3+ was the most effective for regional
and large-scale glacier mapping due to its high intersection over union (IOU) and overall
performance. During their study, they explored that the challenge lies in estimating the
glacier terminus, which requires additional studies on the network’s architecture, imple-
mentation of automated post-processing techniques, and incorporating additional terminus
data. Peng et al. [14] also confirmed that DeepLabV3+ performed with higher accuracy;
however, their proposed model with the LGT encoder and multiple LGCB layers was able
to map both the complete glacier area and clear edges, making it potentially suitable for
glaciers with accurate terminus mapping. Collectively, these studies illustrate the evolving
landscape of AI techniques in glacier mapping, where various models are combined to
improve the accuracy and address diverse challenges.

Another area of glacier studies where AI models have started to be actively applied
is the monitoring of glacier evolution. Compared to glacier mapping, which focuses on
spatial changes, monitoring glacier evolution also considers temporal variations, making
it more complex than mapping studies. Bolibar et al. [56,57] studied the evolution of
glaciers in the French Alps in the 21st century. Their comparative study showed that
nonlinear DL models outperformed linear models by 94% to 108% in variance and 32% to
58% in accuracy, indicating that DL maintains a consistent performance across spatial and
temporal dimensions, whereas linear methods struggle with the increased complexity of
temporal SMB variations. Similarly, Ambinakudige and Intsiful [58] studied the glacier
volume changes of Columbia Icefields from 1985 to 2020, but they used classification
models such as SVM and RF. The latter models provided about 99% accuracy in classifying
glacier features in 1985–2020. Furthermore, Rajat et al. [59] used U-Net to identify and
map glacier evolution in the Himachal Pradesh province of India, but their timeline was
from 1994 to 2021, and the accuracy of the model was around 95%. Yang et al. [60] clearly
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outlined and acknowledged limitations in their approach in their study, including the
assumption that all melted glacier ice converts to water, which overlooks the potential
formation of new ice bodies and does not fully address variability or errors in glacier
changes. Thus, because of the complexity of modeling dynamic glacier changes over time
and space, AI models face notable challenges, highlighting the need for more advanced
approaches. This presents an intriguing opportunity for exploring new AI techniques in
order to better address these challenges. Moreover, the availability and time-frequency of
data are crucial for the accuracy of AI models. Given that glacier monitoring spans several
decades, consistent data throughout the measured and evaluated periods are essential for
training AI models effectively.

Some other studies have pioneered new areas of study, such as snow/ice differentiation
and ice dynamic modeling. In fact, snow/ice differentiation is indeed very important,
because identifying the boundaries between snow and ice allows the size and volume of
glaciers to be estimated. Prieur et al. [61] applied ML methods and showed good accuracy.
However, their pre-processing algorithm (CFMask) might have compatibility problems
with other multi-spectral products like Sentinel. They also mentioned another limitation,
which was the need to retrain classifiers for new multi-spectral products, because different
imaging systems offer varying spectral information. Therefore, training AI models for
snow/ice differentiation using different types of images with varying spectral information
is crucial. This is especially true for all image-based glacier studies using AI, particularly
when developing advanced AI tools that can be applied to any glacier location once trained.
In terms of ice dynamics modeling, Jouvet et al. [62] developed the instructed glacier
model (IGM). In fact, ice has been modeled as a viscous, non-Newtonian fluid as described
by computationally expensive Stokes equations. The authors explained that their IGM
provides near-Stokes accuracy with high computational efficiency; operates on 2-D regular
grids, simplifying data management; and requires only basic topographic inputs without
the need for catchment or flowline identification. However, IGM’s applicability is limited
by its training dataset; it cannot model ice flow beyond the training data’s scope; assumes
isothermal ice; and only supports regular gridded data, excluding unstructured meshes.

5. Conclusions

Understanding changes in glaciers, evaluating their current conditions, inventorying,
and predicting future scenarios based on climate change effects are highly crucial endeavors.
Glaciers serve as vital sources of drinkable water, agricultural irrigation, and energy
generation. Therefore, monitoring their status and forecasting their future behavior are
important tasks in the face of ongoing environmental transformations.

As methods requiring less human interaction to deliver computational results evolve,
the possibility of their application towards monitoring and forecasting glacier layers
becomes feasible. Compared to conventional methods based on remote sensing, such
methods, which mostly rely on artificial intelligence (AI) techniques, are highly accurate,
cost-effective, and reliable once they are trained with accurate and sufficient datasets.
With the rise of AI, the number of works dedicated to the application of ML and DL
methods on glacier mapping and evaluation has notably increased. Therefore, within the
scope of the current state-of-the-art review work, the available research works in AI-based
glacier studies are studied and classified, and relative data are collected and tabulated for
comparative purposes.

Thus, from the collected number of research papers, the following conclusions are obtained:

• All the reviewed works are classified by the purpose of their research. Among them,
glacier mapping is the most studied area, followed by glacier evolution, ice/snow
differentiation, and ice dynamic modeling.

• For AI-based glacier evolution studies, the availability of glacier data in terms of time-
frequency and overall measured duration is highly important to accurately capture
the temporal evolution of glaciers.
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• Ice/snow differentiation and ice dynamic modeling are in their early stages regarding
AI-based studies. However, the methods developed so far show promising accuracy
and require further advancements.

• Methods such as random forest (RF), K-nearest neighbors (KNN), support vector
machines (SVMs), and decision trees (DTs) have been foundational. Among them, RF
often outperforms other traditional methods in accuracy and robustness, especially
for glacier mapping studies.

• Recent studies in glacier mapping have developed CNN-based models, notably U-net
and DeepLabV3+, which showed enhanced accuracy in glacier mapping. However,
the robustness of these models needs to be tested with appropriate methods, such as
hyperparameter optimization, to fine-tune parameters like the learning rate, batch
size, number of layers, and dropout rate.

• Hybrid methods that combine two ML and/or DL methods generally show better per-
formance compared to single methods. However, the compatibility and integrability
of different methods in hybrid solutions have not been thoroughly studied yet, and
comparative studies among hybrid methods are lacking.

• Overall, AI-based glacier research has notably been gaining the attention of scientists
and requires more detailed studies. The consistency of AI-based methods needs to be
further evaluated, particularly when training on one glacier dataset and testing on a
different dataset. Additionally, the impact of training and testing dataset sizes, as well
as the remote sensing technologies used to obtain these datasets, should be assessed.

• More generalized AI-based glacier assessment tools, particularly for worldwide glacier
mapping and inventory, appear to be a promising direction for future research.

Overall, the integration of AI technologies holds enormous promise for improving
glacier mapping and analysis, offering new insights into the complex dynamics of these
vital components of the Earth’s cryosphere. As researchers continue to explore and improve
artificial intelligence methodologies, the potential for greater understanding and better
management of glaciers in the context of climate change is becoming increasingly accessible.

The importance of the current state-of-the-art review is significant because it will serve
as a guideline for future research works in AI-based glacier studies. As the first review
paper in this area, the authors are confident that its results will provide notable value in
this research field.
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